scholarly journals Intrastrain Heterogeneity of the mgpB Gene in Mycoplasma genitalium Is Extensive In Vitro and In Vivo and Suggests that Variation Is Generated via Recombination with Repetitive Chromosomal Sequences

2006 ◽  
Vol 74 (7) ◽  
pp. 3715-3726 ◽  
Author(s):  
Stefanie L. Iverson-Cabral ◽  
Sabina G. Astete ◽  
Craig R. Cohen ◽  
Eduardo P. C. Rocha ◽  
Patricia A. Totten

ABSTRACT Mycoplasma genitalium is associated with reproductive tract disease in women and may persist in the lower genital tract for months, potentially increasing the risk of upper tract infection and transmission to uninfected partners. Despite its exceptionally small genome (580 kb), approximately 4% is composed of repeated elements known as MgPar sequences (MgPa repeats) based on their homology to the mgpB gene that encodes the immunodominant MgPa adhesin protein. The presence of these MgPar sequences, as well as mgpB variability between M. genitalium strains, suggests that mgpB and MgPar sequences recombine to produce variant MgPa proteins. To examine the extent and generation of diversity within single strains of the organism, we examined mgpB variation within M. genitalium strain G-37 and observed sequence heterogeneity that could be explained by recombination between the mgpB expression site and putative donor MgPar sequences. Similarly, we analyzed mgpB sequences from cervical specimens from a persistently infected woman (21 months) and identified 17 different mgpB variants within a single infecting M. genitalium strain, confirming that mgpB heterogeneity occurs over the course of a natural infection. These observations support the hypothesis that recombination occurs between the mgpB gene and MgPar sequences and that the resulting antigenically distinct MgPa variants may contribute to immune evasion and persistence of infection.

Microbiology ◽  
2011 ◽  
Vol 157 (2) ◽  
pp. 548-556 ◽  
Author(s):  
Wenbo Zhang ◽  
Joel B. Baseman

Mycoplasma genitalium is the causative agent of non-gonococcal, chlamydia-negative urethritis in men and has been linked to reproductive tract disease syndromes in women. As with other mycoplasmas, M. genitalium lacks many regulatory genes because of its streamlined genome and total dependence on a parasitic existence. Therefore, it is important to understand how gene regulation occurs in M. genitalium, particularly in response to environmental signals likely to be encountered in vivo. In this study, we developed an oligonucleotide-based microarray to investigate transcriptional changes in M. genitalium following osmotic shock. Using a physiologically relevant osmolarity condition (0.3 M sodium chloride), we identified 39 upregulated and 72 downregulated genes. Of the upregulated genes, 21 were of unknown function and 15 encoded membrane-associated proteins. The majority of downregulated genes encoded enzymes involved in energy metabolism and components of the protein translation process. These data provide insights into the in vivo response of M. genitalium to hyperosmolarity conditions and identify candidate genes that may contribute to mycoplasma survival in the urogenital tract.


2001 ◽  
Vol 30 (1) ◽  
pp. 13-20 ◽  
Author(s):  
G. Dhinakar Raj ◽  
S. Sivakumar ◽  
B. Murali Manohar ◽  
K. Nachimuthu ◽  
A. Mahalinga Nainar

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jean-Ju Chung ◽  
Kiyoshi Miki ◽  
Doory Kim ◽  
Sang-Hee Shim ◽  
Huanan F Shi ◽  
...  

We report that the Gm7068 (CatSpere) and Tex40 (CatSperz) genes encode novel subunits of a 9-subunit CatSper ion channel complex. Targeted disruption of CatSperz reduces CatSper current and sperm rheotactic efficiency in mice, resulting in severe male subfertility. Normally distributed in linear quadrilateral nanodomains along the flagellum, the complex lacking CatSperζ is disrupted at ~0.8 μm intervals along the flagellum. This disruption renders the proximal flagellum inflexible and alters the 3D flagellar envelope, thus preventing sperm from reorienting against fluid flow in vitro and efficiently migrating in vivo. Ejaculated CatSperz-null sperm cells retrieved from the mated female uterus partially rescue in vitro fertilization (IVF) that failed with epididymal spermatozoa alone. Human CatSperε is quadrilaterally arranged along the flagella, similar to the CatSper complex in mouse sperm. We speculate that the newly identified CatSperζ subunit is a late evolutionary adaptation to maximize fertilization inside the mammalian female reproductive tract.


2010 ◽  
Vol 22 (1) ◽  
pp. 307
Author(s):  
D. S. Silva ◽  
P. Rodriguez ◽  
N. S. Arruda ◽  
R. Rodrigues ◽  
J. L. Rodrigues

The capacitation process occurs in vivo upon exposure of the spermatozoa through the female reproductive tract, but can be induced in vitro in the presence of several compounds. This study was conducted to assess the effect of heparin or equine follicular fluid on hyperactivated motility and in vitro induction acrosome reaction swim-up method with frozen-thawed stallion semen. Two hundred microliters of frozen-thawed equine semen was placed in a tube (45°C) to increase contact area and incubated at 37°C for 1 h. After incubation 800 μL of the supernatant was collected by centrifugation (500 × g, 10 min) to collect spermatozoa. The resulting pellet was resuspended in capacitation medium Fert-TALP supplemented with 5.0 μg mL-1 heparin or 100% follicular fluid and incubated for different times (1, 2, 3, 4, and 5 h) at 37°C. After incubation the hyperactivated motility and acrosome-reacted spermatozoa were evaluated. Hoechst stain was used to differentiate live and dead spermatozoa, and chlortetracycline (CTC) fluorescent stain was used to assess the capacitation response of sperm; data were analyzed by ANOVA. The effect of equine follicular fluid resulted in improved percentage of spermatozoa with acrosome reaction at all times of incubation (60, 63, 57, 52, and 58%) but immediately after 3 h of incubation, the hyperactivated motility decreased in heparin group and follicular fluid (42 and 30%, respectively).


2005 ◽  
Vol 17 (9) ◽  
pp. 76
Author(s):  
J. T. McGuane ◽  
H. M. Gehring ◽  
L. J. Parry

The major functions of relaxin are associated with female reproductive physiology, especially the regulation of biochemical processes involved in the remodelling of the reproductive tract at term. Studies in relaxin deficient mice (Rlx–/–) demonstrate that although females give birth to live young without apparent dystocia, they have abnormal cervices and vaginae. This phenotype is attributed to an increase in stromal collagen, but the mechanism(s) by which relaxin regulates extracellular matrix (ECM) production in reproductive tissues is poorly understood. In this study, we assessed the expression of matrix metalloproteinases (MMPs) in the cervix and vagina of pregnant wild-type (Rlx+/+) and Rlx–/– mice. Tissues were obtained from adult C57/Blk6J Rlx+/+ mice on days 7.5, 14.5, 17.5, 18.5 pc and Rlx–/– littermates on days 7.5, 14.5 and 18.5 pc. Real-time PCR using dual-labelled fluorogenic probes was performed in an Opticon 2 cycler (MJ Research) to quantify MMP-2, -3, -7, -9 and -13 gene expression. In the cervix and vagina of Rlx+/+ mice, only MMP-2 mRNA levels were significantly higher at term compared with earlier stages of gestation. There were significant decreases in MMP-7 and -13 expression at term, but no change in MMP-3 and -9. In contrast, MMP-3, -7, -9 and -13 mRNA levels were significantly higher in the cervix and vagina of late pregnant Rlx–/– mice. The expression of MMP-2 did not differ between Rlx+/+ and Rlx–/– mice at term. Despite the higher expression of the majority of MMPs we examined in Rlx–/– mice, there was no histological evidence of increased ECM degradation in the cervix and vagina in late gestation. Although previous in vitro studies suggest that relaxin positively regulates MMP activity, our data demonstrate that relaxin deficiency does not result in decreased MMP expression in the mouse cervix and vagina in vivo.


Endocrinology ◽  
2020 ◽  
Vol 161 (6) ◽  
Author(s):  
Yin Li ◽  
Katherine J Hamilton ◽  
Lalith Perera ◽  
Tianyuan Wang ◽  
Artiom Gruzdev ◽  
...  

Abstract Estrogen insensitivity syndrome (EIS) arises from rare mutations in estrogen receptor-α (ERα, encoded by ESR1 gene) resulting in the inability of estrogen to exert its biological effects. Due to its rarity, mutations in ESR1 gene and the underlying molecular mechanisms of EIS have not been thoroughly studied. Here, we investigate known ESR1 mutants, Q375H and R394H, associated with EIS patients using in vitro and in vivo systems. Comparison of the transcriptome and deoxyribonucleic acid methylome from stable cell lines of both Q375H and R394H clinical mutants shows a differential profile compared with wild-type ERα, resulting in loss of estrogen responsiveness. Molecular dynamic simulation shows that both ESR1 mutations change the ERα conformation of the ligand-receptor complexes. Furthermore, we generated a mouse model Esr1-Q harboring the human mutation using CRISPR/Cas9 genome editing. Female and male Esr1-Q mice are infertile and have similar phenotypes to αERKO mice. Overall phenotypes of the Esr1-Q mice correspond to those observed in the patient with Q375H. Finally, we explore the effects of a synthetic progestogen and a gonadotropin-releasing hormone inhibitor in the Esr1-Q mice for potentially reversing the impaired female reproductive tract function. These findings provide an important basis for understanding the molecular mechanistic consequences associated with EIS.


Author(s):  
Reyon Dcunha ◽  
Reda S. Hussein ◽  
Hanumappa Ananda ◽  
Sandhya Kumari ◽  
Satish Kumar Adiga ◽  
...  

AbstractSpermatozoon is a motile cell with a special ability to travel through the woman’s reproductive tract and fertilize an oocyte. To reach and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during both natural and assisted conception. The global trend of progressive reduction in the number and motility of healthy spermatozoa in the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we discuss various pharmacological agents and biomolecules that can enhance sperm motility in vitro and in vivo conditions to improve assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and embryologists in understanding the mechanism of factors influencing sperm motility and various management strategies to improve treatment outcomes.


2013 ◽  
Vol 81 (12) ◽  
pp. 4604-4614 ◽  
Author(s):  
Alexandra Elliott ◽  
Ying Peng ◽  
Guoquan Zhang

ABSTRACTCoxiella burnetiiis an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity againstC. burnetiiinfection. This study focused on understanding the interaction betweenC. burnetiiand innate immune cellsin vitroandin vivo. Both virulentC. burnetiiNine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting thatC. burnetiican infect neutrophils, but infection is limited. Interestingly,C. burnetiiinside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot killC. burnetiiandC. burnetiimay be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response toC. burnetiinatural infection, SCID mice were exposed to aerosolizedC. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolizedC. burnetii. Studying the interaction betweenC. burnetiiand the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.


Sign in / Sign up

Export Citation Format

Share Document