scholarly journals Coxiella burnetii Interaction with Neutrophils and MacrophagesIn Vitroand in SCID Mice following Aerosol Infection

2013 ◽  
Vol 81 (12) ◽  
pp. 4604-4614 ◽  
Author(s):  
Alexandra Elliott ◽  
Ying Peng ◽  
Guoquan Zhang

ABSTRACTCoxiella burnetiiis an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity againstC. burnetiiinfection. This study focused on understanding the interaction betweenC. burnetiiand innate immune cellsin vitroandin vivo. Both virulentC. burnetiiNine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting thatC. burnetiican infect neutrophils, but infection is limited. Interestingly,C. burnetiiinside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot killC. burnetiiandC. burnetiimay be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response toC. burnetiinatural infection, SCID mice were exposed to aerosolizedC. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI- and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolizedC. burnetii. Studying the interaction betweenC. burnetiiand the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.

2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2016 ◽  
Vol 85 (3) ◽  
Author(s):  
Luis A. Vega ◽  
Kayla M. Valdes ◽  
Ganesh S. Sundar ◽  
Ashton T. Belew ◽  
Emrul Islam ◽  
...  

ABSTRACTAs an exclusively human pathogen,Streptococcus pyogenes(the group A streptococcus [GAS]) has specifically adapted to evade host innate immunity and survive in multiple tissue niches, including blood. GAS can overcome the metabolic constraints of the blood environment and expresses various immunomodulatory factors necessary for survival and immune cell resistance. Here we present our investigation of one such factor, the predicted LysR family transcriptional regulator CpsY. The encoding gene,cpsY, was initially identified as being required for GAS survival in a transposon-site hybridization (TraSH) screen in whole human blood. CpsY is homologous with transcriptional regulators ofStreptococcus mutans(MetR),Streptococcus iniae(CpsY), andStreptococcus agalactiae(MtaR) that regulate methionine transport, amino acid metabolism, resistance to neutrophil-mediated killing, and survivalin vivo. Our investigation indicated that CpsY is involved in GAS resistance to innate immune cells of its human host. However, GAS CpsY does not manifest thein vitrophenotypes of its homologs in other streptococcal species. GAS CpsY appears to regulate a small set of genes that is markedly different from the regulons of its homologs. The differential expression of these genes depends on the growth medium, and CpsY modestly influences their expression. The GAS CpsY regulon includes known virulence factors (mntE,speB,spd,nga[spn],prtS[SpyCEP], andsse) and cell surface-associated factors of GAS (emm1,mur1.2,sibA[cdhA], andM5005_Spy0500). Intriguingly, the loss of CpsY in GAS does not result in virulence defects in murine models of infection, suggesting that CpsY function in immune evasion is specific to the human host.


2015 ◽  
Vol 83 (8) ◽  
pp. 3074-3082 ◽  
Author(s):  
Nan Hou ◽  
Xianyu Piao ◽  
Shuai Liu ◽  
Chuang Wu ◽  
Qijun Chen

T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected withSchistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response againstS. japonicuminfection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+and CD8+T cells, NK1.1+cells, and CD11b+cells from the livers ofS. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+T cells or CD11b+cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbersin vitroandin vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.


2014 ◽  
Vol 82 (11) ◽  
pp. 4530-4541 ◽  
Author(s):  
Ying Peng ◽  
Laura Schoenlaub ◽  
Alexandra Elliott ◽  
William J. Mitchell ◽  
Guoquan Zhang

ABSTRACTOur previous study demonstrated that treatment ofCoxiella burnetiiwith the phase I lipopolysaccharide (PI-LPS)-targeted monoclonal antibody (MAb) 1E4 significantly inhibitedC. burnetiiinfection in mice, suggesting that 1E4 is a protective MAb. To determine whether passive transfer of antibodies (Abs) can provide protection againstC. burnetiinatural infection, we examined if passive transfer of 1E4 would protect SCID mice againstC. burnetiiaerosol infection. The results indicated that 1E4 conferred significant protection against aerosolizedC. burnetii, suggesting that 1E4 may be useful for preventingC. burnetiinatural infection. To further understand the mechanisms of 1E4-mediated protection and to test the possibility of using humanized 1E4 to preventC. burnetiiinfection, we examined whether the Fab fragment of 1E4 (Fab1E4), a recombinant murine single-chain variable fragment (muscFv1E4), and a humanized single-chain variable fragment (huscFv1E4) retained the ability of 1E4 to inhibitC. burnetiiinfection. The results indicated that Fab1E4, muscFv1E4, and huscFv1E4 were able to inhibitC. burnetiiinfection in mice but that their ability to inhibitC. burnetiiinfection was lower than that of 1E4. In addition, treatment ofC. burnetiiwith Fab1E4, muscFv1E4, or huscFv1E4 can blockC. burnetiiinfection of macrophages. Interestingly, treatment ofC. burnetiiwith huscFv1E4 can significantly reduceC. burnetiiinfectivity in human macrophages. This report provides the first evidence to demonstrate that the humanized variable fragments of an LPS-specific MAb can neutralizeC. burnetiiinfection and appears to be a promising step toward the potential use of a humanized MAb as emergency prophylaxis againstC. burnetiiexposure.


2013 ◽  
Vol 81 (10) ◽  
pp. 3855-3864 ◽  
Author(s):  
Amir I. Tukhvatulin ◽  
Ilya I. Gitlin ◽  
Dmitry V. Shcheblyakov ◽  
Natalia M. Artemicheva ◽  
Lyudmila G. Burdelya ◽  
...  

ABSTRACTPathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) bothin vitroandin vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasiveSalmonellainfection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infectionin vivo.


2020 ◽  
Vol 88 (12) ◽  
Author(s):  
Zachary P. Howard ◽  
Anders Omsland

ABSTRACT Coxiella burnetii is a zoonotic bacterial obligate intracellular parasite and the cause of query (Q) fever. During natural infection of female animals, C. burnetii shows tropism for the placenta and is associated with late-term abortion, at which time the pathogen titer in placental tissue can exceed one billion bacteria per gram. During later stages of pregnancy, placental trophoblasts serve as the major source of progesterone, a steroid hormone known to affect the replication of some pathogens. During infection of placenta-derived JEG-3 cells, C. burnetii showed sensitivity to progesterone but not the immediate precursor pregnenolone or estrogen, another major mammalian steroid hormone. Using host cell-free culture, progesterone was determined to have a direct inhibitory effect on C. burnetii replication. Synergy between the inhibitory effect of progesterone and the efflux pump inhibitors verapamil and 1-(1-naphthylmethyl)-piperazine is consistent with a role for efflux pumps in preventing progesterone-mediated inhibition of C. burnetii activity. The sensitivity of C. burnetii to progesterone, but not structurally related molecules, is consistent with the ability of progesterone to influence pathogen replication in progesterone-producing tissues.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cody B. Smith ◽  
Charles Evavold ◽  
Gilbert J. Kersh

AbstractCoxiella burnetii, the etiologic agent of Q fever, replicates in an intracellular phagolysosome with pH between 4 and 5. The impact of this low pH environment on antimicrobial treatment is not well understood. An in vitro system for testing antibiotic susceptibility of C. burnetii in axenic media was set up to evaluate the impact of pH on C. burnetii growth and survival in the presence and absence of antimicrobial agents. The data show that C. burnetii does not grow in axenic media at pH 6.0 or higher, but the organisms remain viable. At pH of 4.75, 5.25, and 5.75 moxifloxacin, doxycycline, and rifampin are effective at preventing growth of C. burnetii in axenic media, with moxifloxacin and doxycycline being bacteriostatic and rifampin having bactericidal activity. The efficacy of doxycycline and moxifloxacin improved at higher pH, whereas rifampin activity was pH independent. Hydroxychloroquine is thought to inhibit growth of C. burnetii in vivo by raising the pH of typically acidic intracellular compartments. It had no direct bactericidal or bacteriostatic activity on C. burnetii in axenic media, suggesting that raising pH of acidic intracellular compartments is its primary mechanism of action in vivo. The data suggest that doxycycline and hydroxychloroquine are primarily independent bacteriostatic agents.


2011 ◽  
Vol 79 (10) ◽  
pp. 3940-3946 ◽  
Author(s):  
Cuixia Shi ◽  
Bikash Sahay ◽  
Jennifer Q. Russell ◽  
Karen A. Fortner ◽  
Nicholas Hardin ◽  
...  

ABSTRACTLittle is known regarding the function of γδ T cells, although they accumulate at sites of inflammation in infections and autoimmune disorders. We previously observed that γδ T cellsin vitroare activated byBorrelia burgdorferiin a TLR2-dependent manner. We now observe that the activated γδ T cells can in turn stimulate dendritic cellsin vitroto produce cytokines and chemokines that are important for the adaptive immune response. This suggested thatin vivoγδ T cells may assist in activating the adaptive immune response. We examined this possibilityin vivoand observed that γδ T cells are activated and expand in number duringBorreliainfection, and this was reduced in the absence of TLR2. Furthermore, in the absence of γδ T cells, there was a significantly blunted response of adaptive immunity, as reflected in reduced expansion of T and B cells and reduced serum levels of anti-Borreliaantibodies, cytokines, and chemokines. This paralleled a greaterBorreliaburden in γδ-deficient mice as well as more cardiac inflammation. These findings are consistent with a model of γδ T cells functioning to promote the adaptive immune response during infection.


2014 ◽  
Vol 21 (11) ◽  
pp. 1550-1559 ◽  
Author(s):  
Benjamin J. Koestler ◽  
Sergey S. Seregin ◽  
David P. W. Rastall ◽  
Yasser A. Aldhamen ◽  
Sarah Godbehere ◽  
...  

ABSTRACTThe bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesizedin vivoby transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMPin vitroandin vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to aClostridium difficileantigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
George Sakoulas ◽  
Monika Kumaraswamy ◽  
Armin Kousha ◽  
Victor Nizet

ABSTRACT It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo. This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior clinical performance to other antibiotics that have been used to treat Salmonella meningitis. These findings are important additions to the building understanding of current in vitro antimicrobial assay limitations that hopefully will amount to future improvements in these assays to better predict clinical efficacy and activity in vivo.


Sign in / Sign up

Export Citation Format

Share Document