scholarly journals Effects of DNA- and Mycobacterium bovis BCG-Based Delivery of the Flt3 Ligand on Protective Immunity to Mycobacterium tuberculosis

2007 ◽  
Vol 75 (11) ◽  
pp. 5368-5375 ◽  
Author(s):  
James A. Triccas ◽  
Elena Shklovskaya ◽  
Joanne Spratt ◽  
Anthony A. Ryan ◽  
Umaimainthan Palendira ◽  
...  

ABSTRACT The control of intracellular pathogens such as Mycobacterium tuberculosis is dependent on the activation and maintenance of pathogen-reactive T cells. Dendritic cells (DCs) are the major antigen-presenting cells initiating antimycobacterial T-cell responses in vivo. To investigate if immunization strategies that aim to optimize DC function can improve protective immunity against virulent mycobacterial infection, we exploited the ability of the hematopoietic growth factor Fms-like tyrosine kinase 3 ligand (Flt3L) to expand the number of DCs in vivo. A DNA fusion of the genes encoding murine Flt3L and M. tuberculosis antigen 85B stimulated enhanced gamma interferon (IFN-γ) release by T cells and provided better protection against virulent M. tuberculosis than DNA encoding the single components. Vaccination of mice with a recombinant Mycobacterium bovis BCG strain secreting Flt3L (BCG:Flt3L) led to early expansion of DCs compared to immunization with BCG alone, and this effect was associated with increased stimulation of BCG-reactive IFN-γ-secreting T cells. BCG and BCG:Flt3L provided similar protective efficacies against low-dose aerosol M. tuberculosis; however, immunization of immunodeficient mice revealed that BCG:Flt3L was markedly less virulent than conventional BCG. These results demonstrate the potential of in vivo targeting of DCs to improve antimycobacterial vaccine efficacy.

1997 ◽  
Vol 186 (7) ◽  
pp. 1137-1147 ◽  
Author(s):  
Sanjay Gurunathan ◽  
David L. Sacks ◽  
Daniel R. Brown ◽  
Steven L. Reiner ◽  
Hughes Charest ◽  
...  

To determine whether DNA immunization could elicit protective immunity to Leishmania major in susceptible BALB/c mice, cDNA for the cloned Leishmania antigen LACK was inserted into a euykaryotic expression vector downstream to the cytomegalovirus promoter. Susceptible BALB/c mice were then vaccinated subcutaneously with LACK DNA and challenged with L. major promastigotes. We compared the protective efficacy of LACK DNA vaccination with that of recombinant LACK protein in the presence or absence of recombinant interleukin (rIL)-12 protein. Protection induced by LACK DNA was similar to that achieved by LACK protein and rIL-12, but superior to LACK protein without rIL-12. The immunity conferred by LACK DNA was durable insofar as mice challenged 5 wk after vaccination were still protected, and the infection was controlled for at least 20 wk after challenge. In addition, the ability of mice to control infection at sites distant to the site of vaccination suggests that systemic protection was achieved by LACK DNA vaccination. The control of disease progression and parasitic burden in mice vaccinated with LACK DNA was associated with enhancement of antigen-specific interferon-γ (IFN-γ) production. Moreover, both the enhancement of IFN-γ production and the protective immune response induced by LACK DNA vaccination was IL-12 dependent. Unexpectedly, depletion of CD8+ T cells at the time of vaccination or infection also abolished the protective response induced by LACK DNA vaccination, suggesting a role for CD8+ T cells in DNA vaccine induced protection to L. major. Thus, DNA immunization may offer an attractive alternative vaccination strategy against intracellular pathogens, as compared with conventional vaccination with antigens combined with adjuvants.


2006 ◽  
Vol 75 (3) ◽  
pp. 1154-1166 ◽  
Author(s):  
Laura H. Hogan ◽  
Dominic O. Co ◽  
Jozsef Karman ◽  
Erika Heninger ◽  
M. Suresh ◽  
...  

ABSTRACT The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency.


2008 ◽  
Vol 76 (4) ◽  
pp. 1565-1571 ◽  
Author(s):  
Taiki Aoshi ◽  
Toshi Nagata ◽  
Mina Suzuki ◽  
Masato Uchijima ◽  
Dai Hashimoto ◽  
...  

ABSTRACT CD8+ T cells play a pivotal role in protection against Mycobacterium tuberculosis infection. We identified a novel HLA-A*0201-restricted CD8+ T-cell epitope on a dominant secreted antigen of M. tuberculosis, MPT51, in HLA-A*0201 transgenic HHD mice. HHD mice were immunized with plasmid DNA encoding MPT51 with gene gun bombardment, and gamma interferon (IFN-γ) production by the immune splenocytes was analyzed. In response to overlapping synthetic peptides covering the mature MPT51 sequence, the splenocytes were stimulated to produce IFN-γ by only one peptide, p51-70. Three-color flow cytometric analysis of intracellular IFN-γ and cell surface CD4 and CD8 staining revealed that the MPT51 p51-70 peptide contains an immunodominant CD8+ T-cell epitope. Further analysis using computer algorithms permitted identification of a bona fide T-cell epitope, p53-62. A major histocompatibility complex class I stabilization assay using T2 cells confirmed that this epitope binds to HLA-A*0201. The T cells were capable of lysing MPT51 p53-62 peptide-pulsed T2 cells. In addition, MPT51 p53-62-specific memory CD8+ T cells were found in tuberculin skin test-positive HLA-A*0201+ healthy individuals. Use of this HLA-A*0201-restricted CD8+ T-cell epitope for analysis of the role of MPT51-specific T cells in M. tuberculosis infection and for design of vaccines against tuberculosis is feasible.


2003 ◽  
Vol 71 (1) ◽  
pp. 354-364 ◽  
Author(s):  
Amminikutty Jeevan ◽  
Teizo Yoshimura ◽  
Kyeong Eun Lee ◽  
David N. McMurray

ABSTRACT To determine whether Mycobacterium bovis BCG vaccination would alter gamma interferon (IFN-γ) mRNA expression in guinea pig cells exposed to Mycobacterium tuberculosis, we cloned a cDNA encoding guinea pig IFN-γ from a spleen cell cDNA library. The cDNA is composed of 1,110 bp, with an open reading frame encoding a 166-amino-acid protein which shows 56 and 41% amino acid sequence homology to human and mouse IFN-γ, respectively. Spleen or lymph node cells from naïve and BCG-vaccinated guinea pigs were stimulated with purified protein derivative (PPD) or M. tuberculosis H37Ra or H37Rv, and the total RNA was subjected to Northern blot analysis with a 32P-labeled probe derived from the cDNA clone. Compared to the IFN-γ mRNA expression in cells of naïve animals, that in spleen and lymph node cells exposed to various stimuli was enhanced after BCG vaccination. However, there was a significant reduction in IFN-γ mRNA levels when cells were stimulated with a multiplicity of infection of greater than 1 virulent M. tuberculosis bacterium per 10 cells. The enhanced IFN-γ mRNA response in BCG-vaccinated animals was associated with an increase in the proportions of CD4+ T cells in the spleens, as determined by fluorescence-activated cell sorter analysis. Furthermore, the nonadherent population in the spleens enriched either by panning with anti-guinea pig immunoglobulin G-coated plates or by purification on nylon wool columns produced more IFN-γ mRNA than whole spleen cells following stimulation with concanavalin A or PPD. This indicates that T cells are principally responsible for the upregulation of IFN-γ mRNA expression following BCG vaccination. The mechanism by which virulent mycobacteria suppress IFN-γ mRNA accumulation is currently under investigation.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Qingmei Jia ◽  
Barbara Jane Dillon ◽  
Saša Masleša-Galić ◽  
Marcus A. Horwitz

ABSTRACT A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective Mycobacterium bovis BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein (r30/antigen 85B [Ag85B]) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated L. monocytogenes vectors, L. monocytogenes ΔactA (LmI), L. monocytogenes ΔactA ΔinlB (LmII), and L. monocytogenes ΔactA ΔinlB prfA* (LmIII), we constructed five rLm30 vaccine candidates expressing r30 linked in frame to the L. monocytogenes listeriolysin O signal sequence and driven by the hly promoter (h30) or linked in frame to the ActA N-terminal 100 amino acids and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm30 expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the largest amount of r30 in broth culture, all five rLm30 vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting of BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T cells expressing the three cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) (P < 0.001) and splenic and lung CD8+ T cells expressing IFN-γ (P < 0.0001). In mice and guinea pigs, the rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 with an adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting of mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized M. tuberculosis (P < 0.01).


2010 ◽  
Vol 78 (10) ◽  
pp. 4187-4194 ◽  
Author(s):  
Teresa M. Wozniak ◽  
Bernadette M. Saunders ◽  
Anthony A. Ryan ◽  
Warwick J. Britton

ABSTRACT Protective immunity against tuberculosis (TB) requires the integrated response of a network of lymphocytes. Both gamma interferon (IFN-γ)- and interleukin 17 (IL-17)-secreting CD4+ T cells have been identified in subjects with latent TB infection and during experimental Mycobacterium tuberculosis infection, but the contribution of Th17 cells to protective immunity is unclear. To examine their protective effects in vivo, we transferred mycobacterium-specific IL-17- and IFN-γ-secreting CD4+ T cells isolated from M. tuberculosis BCG-immunized IL-12p40−/− and IFN-γ−/− or wild-type mice, respectively, into M. tuberculosis-infected IL-12p40−/− or RAG−/− mice. In the absence of IL-12 and IL-23, neither IL-17-secreting (Th17) nor IFN-γ-secreting (Th1) BCG-specific T cells expanded or provided protection against M. tuberculosis. In RAG−/− recipients with an intact IL-12/IL-23 axis, both Th17 and Th1 cells were activated and induced significant protection against M. tuberculosis. The reduction in the bacterial load following transfer of IFN-γ−/− Th17 cells was associated with significant prolongation of survival compared to recipients of naïve IFN-γ−/− T cells. This effect was at the cost of an increased inflammatory infiltrate characterized by an excess of neutrophils. Therefore, Th17 cells can provide IFN-γ-independent protection against M. tuberculosis, and this effect may contribute to the early control of M. tuberculosis infection.


2015 ◽  
Vol 22 (9) ◽  
pp. 1060-1069 ◽  
Author(s):  
Mariateresa Coppola ◽  
Susan J. F. van den Eeden ◽  
Louis Wilson ◽  
Kees L. M. C. Franken ◽  
Tom H. M. Ottenhoff ◽  
...  

ABSTRACTResponsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions.Mycobacterium bovisBCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity againstMycobacterium tuberculosislatency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a majorM. tuberculosislatency antigen which is highly expressed by “dormant”M. tuberculosisand well recognized by T cells from latentlyM. tuberculosis-infected individuals. In order to assess itsin vivoimmunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ+/TNF+) and IFN-γ+CD4+T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs ofM. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosischallenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential ofM. tuberculosislatency antigens to improve BCG efficacy. These data suggest a promising role forM. tuberculosislatency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.


2009 ◽  
Vol 77 (10) ◽  
pp. 4383-4395 ◽  
Author(s):  
Bruna C. G. de Alencar ◽  
Pedro M. Persechini ◽  
Filipe A. Haolla ◽  
Gabriel de Oliveira ◽  
Jaline C. Silverio ◽  
...  

ABSTRACT A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.


2004 ◽  
Vol 72 (7) ◽  
pp. 3855-3862 ◽  
Author(s):  
Toshiki Yajima ◽  
Hitoshi Nishimura ◽  
Kimika Saito ◽  
Hiroyuki Kuwano ◽  
Yasunobu Yoshikai

ABSTRACT Mice primed with Mycobacterium bovis bacillus Calmette-Guérin (BCG) are highly sensitive to lipopolysaccharide (LPS)-induced liver injury and lethality. We found that interleukin-15 (IL-15) transgenic (Tg) mice primed with BCG were more susceptible to LPS-induced liver injury than non-Tg mice. The numbers of CD44+ CD8+ T cells expressing intracellular gamma interferon (IFN-γ) significantly increased in the livers of BCG-primed IL-15 Tg mice after LPS injection, and the depletion of CD8+ T cells from BCG-primed IL-15 Tg mice completely abolished the susceptibility to LPS-induced lethality. Liver T cells from BCG-primed IL-15 Tg mice produced IFN-γ in vitro in response to LPS, which was inhibited by the addition of anti-IL-12 monoclonal antibody (MAb). In vivo treatment with anti-IL-12 MAb inhibited the appearance of CD44+ CD8+ T cells expressing intracellular IFN-γ after LPS injection. These results suggest that the overexpression of IL-15 increases susceptibility to LPS-induced liver injury in BCG-primed mice via bystander activation of CD8+ T cells.


2002 ◽  
Vol 70 (9) ◽  
pp. 4833-4840 ◽  
Author(s):  
Masaharu Katae ◽  
Yasushi Miyahira ◽  
Kazuyoshi Takeda ◽  
Hironori Matsuda ◽  
Hideo Yagita ◽  
...  

ABSTRACT We tested the immunogenicity of two Trypanosoma cruzi antigens injected into mice in the form of DNA vaccine. Immunization with DNA encoding dihydroorotate dehydrogenase did not confer protective immunity in all mouse strains tested. Immunization with DNA encoding trans-sialidase surface antigen (TSSA) protected C57BL/6 (H-2b ) mice but not BALB/c (H-2d ) or C3H/Hej (H-2k ) mice against lethal T. cruzi infection. In vivo depletion of CD4+ or CD8+ T cells abolished the protective immunity elicited by TSSA gene in C57BL/6 mice. Enzyme-linked immunospot assay with splenocytes from T. cruzi-infected mice or TSSA gene-vaccinated mice identified an H-2Kb -restricted antigenic peptide, ANYNFTLV. The CD8+-T-cell line specific for this peptide could recognize T. cruzi-infected cells in vitro and could protect naive mice from lethal infection when adoptively transferred. Coadministration of the interleukin-12 (IL-12) gene with the TSSA gene facilitated the induction of ANYNFTLV-specific CD8+ T cells and improved the vaccine efficacy against lethal T. cruzi infection. These results reinforced the utility of immunomodulatory adjuvants such as IL-12 gene for eliciting protective immunity against intracellular parasites by DNA vaccination.


Sign in / Sign up

Export Citation Format

Share Document