scholarly journals Differential Expression of Gamma Interferon mRNA Induced by Attenuated and Virulent Mycobacterium tuberculosis in Guinea Pig Cells after Mycobacterium bovis BCG Vaccination

2003 ◽  
Vol 71 (1) ◽  
pp. 354-364 ◽  
Author(s):  
Amminikutty Jeevan ◽  
Teizo Yoshimura ◽  
Kyeong Eun Lee ◽  
David N. McMurray

ABSTRACT To determine whether Mycobacterium bovis BCG vaccination would alter gamma interferon (IFN-γ) mRNA expression in guinea pig cells exposed to Mycobacterium tuberculosis, we cloned a cDNA encoding guinea pig IFN-γ from a spleen cell cDNA library. The cDNA is composed of 1,110 bp, with an open reading frame encoding a 166-amino-acid protein which shows 56 and 41% amino acid sequence homology to human and mouse IFN-γ, respectively. Spleen or lymph node cells from naïve and BCG-vaccinated guinea pigs were stimulated with purified protein derivative (PPD) or M. tuberculosis H37Ra or H37Rv, and the total RNA was subjected to Northern blot analysis with a 32P-labeled probe derived from the cDNA clone. Compared to the IFN-γ mRNA expression in cells of naïve animals, that in spleen and lymph node cells exposed to various stimuli was enhanced after BCG vaccination. However, there was a significant reduction in IFN-γ mRNA levels when cells were stimulated with a multiplicity of infection of greater than 1 virulent M. tuberculosis bacterium per 10 cells. The enhanced IFN-γ mRNA response in BCG-vaccinated animals was associated with an increase in the proportions of CD4+ T cells in the spleens, as determined by fluorescence-activated cell sorter analysis. Furthermore, the nonadherent population in the spleens enriched either by panning with anti-guinea pig immunoglobulin G-coated plates or by purification on nylon wool columns produced more IFN-γ mRNA than whole spleen cells following stimulation with concanavalin A or PPD. This indicates that T cells are principally responsible for the upregulation of IFN-γ mRNA expression following BCG vaccination. The mechanism by which virulent mycobacteria suppress IFN-γ mRNA accumulation is currently under investigation.

2009 ◽  
Vol 77 (11) ◽  
pp. 4837-4846 ◽  
Author(s):  
Ajay Grover ◽  
Jennifer Taylor ◽  
JoLynn Troudt ◽  
Andrew Keyser ◽  
Kimberly Arnett ◽  
...  

ABSTRACT The guinea pig model of tuberculosis is used extensively in assessing novel vaccines, since Mycobacterium bovis BCG vaccination effectively prolongs survival after low-dose aerosol infection with virulent M. tuberculosis. To better understand how BCG extends time to death after pulmonary infection with M. tuberculosis, we examined cytokine responses postvaccination and recruitment of activated T cells and cytokine response postinfection. At 10 weeks postvaccination, splenic gamma interferon (IFN-γ) mRNA was significantly elevated compared to the levels at 5 weeks in ex vivo stimulation assays. At 15, 40, 60, and 120 days postinfection, T-cell activation (CD4+ CD62Llow and CD8+ CD62Llow) and mRNA expression of IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-10, IL-12, and eomesodermin were assessed. Our data show that at day 40, BCG-vaccinated guinea pigs had significantly increased levels of IFN-γ mRNA expression but decreased TNF-α mRNA expression in their lungs compared to the levels in nonvaccinated animals. At day 120, a time when nonvaccinated guinea pigs succumbed to infection, low levels of IFN-γ mRNA were observed even though there were increasing levels of IL-1, IL-12, and IL-10, and the numbers of activated T cells did not differ from those in BCG-vaccinated animals. BCG vaccination conferred the advantage of recruiting greater numbers of CD4+ CD62Llow T cells at day 40, although the numbers of CD8+ CD62Llow T cells were not elevated compared to the numbers in nonvaccinated animals. Our data suggest that day 40 postinfection may be a pivotal time point in determining vaccine efficacy and prolonged survival and that BCG promotes the capacity of T cells in the lungs to respond to infection.


1977 ◽  
Vol 146 (3) ◽  
pp. 766-778 ◽  
Author(s):  
C A Prange ◽  
J Fiedler ◽  
D E Nitecki ◽  
C J Bellone

Shared idiotypy between B- and T-cell receptors specific for the antigen L-tyrosine-p-azophenyltrimethylammonium [tyr(TMA)] was studied in an antigen-binding assay using idiotypic antisera. These idiotypic reagents were prepared by inoculation of rabbits with purified anti-tyr(TMA) antibody raised in strain 13 guinea pigs. The antisera blocked 78-83% of the antigen-binding T cells (T-ABC) and 50-55% of the antigen-binding B cells (B-ABC) from tyr(TMA)-immune strain 13 and outbred lymph node cells (LNC). An excess of normal guinea pig Ig in the ABC assay did not affect the ability of the idiotypic antisera to block T- and B-ABC. Nylon wool-passed tyr(TMA)-immune LNC were trypsin treated resulting in a 75% loss of T-ABC. The trypsin-treated population was then cultured for 16 h which resulted in a return of T-ABC to 92% of pretrypsin values. 77% of these regenerated T-ABC could be blocked with idiotypic antisera. Specificity of the idiotypic antisera was tested in L-tyrosine-p-azobenzenearsonate-immune guinea pig LNC. Neither T- nor B-ABC were blocked in this heterologous system. Further blocking experiments were performed to characterize the nature of the T-ABC receptor. A variety of anti-Ig reagents, some of which block B-ABC, do not inhibit T-ABC suggesting that variable regions on T cells are not linked to Ig Constant regions.


2009 ◽  
Vol 77 (12) ◽  
pp. 5311-5321 ◽  
Author(s):  
Denise Morais da Fonseca ◽  
Celio Lopes Silva ◽  
Pryscilla Fanini Wowk ◽  
Marina Oliveira e Paula ◽  
Simone Gusmão Ramos ◽  
...  

ABSTRACT Culture filtrate proteins (CFP) are potential targets for tuberculosis vaccine development. We previously showed that despite the high level of gamma interferon (IFN-γ) production elicited by homologous immunization with CFP plus CpG oligodeoxynucleotides (CFP/CpG), we did not observe protection when these mice were challenged with Mycobacterium tuberculosis. In order to use the IFN-γ-inducing ability of CFP antigens, in this study we evaluated a prime-boost heterologous immunization based on CFP/CpG to boost Mycobacterium bovis BCG vaccination in order to find an immunization schedule that could induce protection. Heterologous BCG-CFP/CpG immunization provided significant protection against experimental tuberculosis, and this protection was sustained during the late phase of infection and was even better than that conferred by a single BCG immunization. The protection was associated with high levels of antigen-specific IFN-γ and interleukin-17 (IL-17) and low IL-4 production. The deleterious role of IL-4 was confirmed when IL-4 knockout mice vaccinated with CFP/CpG showed consistent protection similar to that elicited by BCG-CFP/CpG heterologous immunization. These findings show that a single dose of CFP/CpG can represent a new strategy to boost the protection conferred by BCG vaccination. Moreover, different immunological parameters, such as IFN-γ and IL-17 and tightly regulated IL-4 secretion, seem to contribute to the efficacy of this tuberculosis vaccine.


2008 ◽  
Vol 15 (8) ◽  
pp. 1248-1258 ◽  
Author(s):  
Diane Ordway ◽  
Marcela Henao-Tamayo ◽  
Crystal Shanley ◽  
Erin E. Smith ◽  
Gopinath Palanisamy ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG) currently remains the only licensed vaccine for the prevention of tuberculosis. In this study, we used a newly described flow cytometric technique to monitor changes in cell populations accumulating in the lungs and lymph nodes of naïve and vaccinated guinea pigs challenged by low-dose aerosol infection with virulent Mycobacterium tuberculosis. As anticipated, vaccinated guinea pigs controlled the growth of the challenge infection more efficiently than controls did. This early phase of bacterial control in immune animals was associated with increased accumulation of CD4 and CD8 T cells, including cells expressing the activation marker CD45, as well as macrophages expressing class II major histocompatibility complex molecules. As the infection continued, the numbers of T cells in the lungs of vaccinated animals waned, whereas the numbers of these cells expressing CD45 increased. Whereas BCG vaccination reduced the influx of heterophils (neutrophils) into the lungs, an early B-cell influx was observed in these vaccinated animals. Overall, vaccine protection was associated with reduced pathology and lung damage in the vaccinated animals. These data provide the first direct evidence that BCG vaccination accelerates the influx of protective T-cell and macrophage populations into the infected lungs, diminishes the accumulation of nonprotective cell populations, and reduces the severity of lung pathology.


2017 ◽  
Vol 85 (9) ◽  
Author(s):  
Qingmei Jia ◽  
Barbara Jane Dillon ◽  
Saša Masleša-Galić ◽  
Marcus A. Horwitz

ABSTRACT A potent vaccine against tuberculosis, one of the world's deadliest diseases, is needed to enhance the immunity of people worldwide, most of whom have been vaccinated with the partially effective Mycobacterium bovis BCG vaccine. Here we investigate novel live attenuated recombinant Listeria monocytogenes (rLm) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein (r30/antigen 85B [Ag85B]) (rLm30) as heterologous booster vaccines in animals primed with BCG. Using three attenuated L. monocytogenes vectors, L. monocytogenes ΔactA (LmI), L. monocytogenes ΔactA ΔinlB (LmII), and L. monocytogenes ΔactA ΔinlB prfA* (LmIII), we constructed five rLm30 vaccine candidates expressing r30 linked in frame to the L. monocytogenes listeriolysin O signal sequence and driven by the hly promoter (h30) or linked in frame to the ActA N-terminal 100 amino acids and driven by the actA promoter (a30). All five rLm30 vaccines secreted r30 in broth and macrophages; while rLm30 expressing r30 via a constitutively active prfA* regulon (rLmIII/a30) expressed the largest amount of r30 in broth culture, all five rLm30 vaccines expressed equivalent amounts of r30 in infected macrophages. In comparative studies, boosting of BCG-immunized mice with rLmIII/a30 induced the strongest antigen-specific T-cell responses, including splenic and lung polyfunctional CD4+ T cells expressing the three cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2 (IL-2) (P < 0.001) and splenic and lung CD8+ T cells expressing IFN-γ (P < 0.0001). In mice and guinea pigs, the rLmIII/a30 and rLmI/h30 vaccines were generally more potent booster vaccines than r30 with an adjuvant and a recombinant adenovirus vaccine expressing r30. In a setting in which BCG alone was highly immunoprotective, boosting of mice with rLmIII/a30, the most potent of the vaccines, significantly enhanced protection against aerosolized M. tuberculosis (P < 0.01).


2015 ◽  
Vol 22 (7) ◽  
pp. 778-788 ◽  
Author(s):  
Mardi C. Boer ◽  
Corine Prins ◽  
Krista E. van Meijgaarden ◽  
Jaap T. van Dissel ◽  
Tom H. M. Ottenhoff ◽  
...  

ABSTRACTMycobacterium bovisbacillus Calmette-Guérin (BCG), the only currently available vaccine against tuberculosis, induces variable protection in adults. Immune correlates of protection are lacking, and analyses on cytokine-producing T cell subsets in protected versus unprotected cohorts have yielded inconsistent results. We studied the primary T cell response, both proinflammatory and regulatory T cell responses, induced by BCG vaccination in adults. Twelve healthy adult volunteers who were tuberculin skin test (TST) negative, QuantiFERON test (QFT) negative, and BCG naive were vaccinated with BCG and followed up prospectively. BCG vaccination induced an unexpectedly dichotomous immune response in this small, BCG-naive, young-adult cohort: BCG vaccination induced either gamma interferon-positive (IFN-γ+) interleukin 2-positive (IL-2+) tumor necrosis factor α-positive (TNF-α+) polyfunctional CD4+T cells concurrent with CD4+IL-17A+and CD8+IFN-γ+T cells or, in contrast, virtually absent cytokine responses with induction of CD8+regulatory T cells. Significant induction of polyfunctional CD4+IFN-γ+IL-2+TNF-α+T cells and IFN-γ production by peripheral blood mononuclear cells (PBMCs) was confined to individuals with strong immunization-induced local skin inflammation and increased serum C-reactive protein (CRP). Conversely, in individuals with mild inflammation, regulatory-like CD8+T cells were uniquely induced. Thus, BCG vaccination either induced a broad proinflammatory T cell response with local inflammatory reactogenicity or, in contrast, a predominant CD8+regulatory T cell response with mild local inflammation, poor cytokine induction, and absent polyfunctional CD4+T cells. Further detailed fine mapping of the heterogeneous host response to BCG vaccination using classical and nonclassical immune markers will enhance our understanding of the mechanisms and determinants that underlie the induction of apparently opposite immune responses and how these impact the ability of BCG to induce protective immunity to TB.


2004 ◽  
Vol 72 (11) ◽  
pp. 6622-6632 ◽  
Author(s):  
Lise Brandt ◽  
Yasir A. W. Skeiky ◽  
Mark R. Alderson ◽  
Yves Lobet ◽  
Wilfried Dalemans ◽  
...  

ABSTRACT A tuberculosis vaccine candidate consisting of a 72-kDa polyprotein or fusion protein based upon the Mtb32 and Mtb39 antigens of Mycobacterium tuberculosis and designated Mtb72F was tested for its protective capacity as a potential adjunct to the Mycobacterium bovis BCG vaccine in the mouse and guinea pig models of this disease. Formulation of recombinant Mtb72F (rMtb72F) in an AS02A adjuvant enhanced the Th1 response to BCG in mice but did not further reduce the bacterial load in the lungs after aerosol challenge infection. In the more stringent guinea pig disease model, rMtb72F delivered by coadministration with BCG vaccination significantly improved the survival of these animals compared to BCG alone, with some animals still alive and healthy in their appearance at >100 weeks post-aerosol challenge. A similar trend was observed with guinea pigs in which BCG vaccination was boosted by DNA vaccination, although this increase was not statistically significant due to excellent protection conferred by BCG alone. Histological examination of the lungs of test animals indicated that while BCG controls eventually died from overwhelming lung consolidation, the majority of guinea pigs receiving BCG mixed with rMtb72F or boosted twice with Mtb72F DNA had mostly clear lungs with minimal granulomatous lesions. Lesions were still prominent in guinea pigs receiving BCG and the Mtb72F DNA boost, but there was considerable evidence of lesion healing and airway remodeling and reestablishment. These data support the hypothesis that the coadministration or boosting of BCG vaccination with Mtb72F may limit the lung consolidation seen with BCG alone and may promote lesion resolution and healing. Collectively, these data suggest that enhancing BCG is a valid vaccination strategy for tuberculosis that is worthy of clinical evaluation.


2002 ◽  
Vol 70 (3) ◽  
pp. 1245-1253 ◽  
Author(s):  
Amminikutty Jeevan ◽  
Teizo Yoshimura ◽  
Gregory Foster ◽  
David N. McMurray

ABSTRACT The effect of Mycobacterium bovis BCG vaccination on interleukin-1β (IL-1β) or regulated-upon-activation, normally T-cell-expressed and -secreted chemokine (RANTES) mRNA expression in guinea pig spleen cells stimulated with concanavalin A, lipopolysaccharide (LPS), phorbol myristate acetate (PMA) plus ionomycin, or purified protein derivative (PPD) was studied in vitro. Similarly, peritoneal exudate cell-derived macrophages from naïve and BCG-vaccinated guinea pigs were infected with M. bovis BCG, Mycobacterium avium, the attenuated Mycobacterium tuberculosis H37Ra strain, or virulent strains H37Rv and Erdman of M. tuberculosis. Total RNA was subjected to Northern blot analysis using probes generated from guinea pig IL-1β or RANTES cDNA. Although IL-1β and RANTES mRNA could be detected in the spleen cells from naïve animals stimulated with LPS or PMA plus ionomycin, the levels were significantly enhanced after BCG vaccination. mRNA expression was also elevated in macrophages infected with live mycobacteria after BCG vaccination. However, macrophages infected with the virulent H37Rv strain of M. tuberculosis showed 75 to 90% reductions in IL-1β expression and 25 to 60% reductions in RANTES mRNA expression compared with macrophages infected with the attenuated H37Ra strain. The IL-1β mRNA levels peaked as soon as 1 h after PPD stimulation and 4 h after M. tuberculosis H37Rv infection of macrophages. In contrast, RANTES mRNA expression was delayed until 48 h after infection. These results indicate that molecular mediators produced in response to various stimuli associated with protective immunity against mycobacteria are upregulated after BCG vaccination; however, a significantly weaker response was observed with virulent M. tuberculosis. These initial studies indicate that BCG vaccination has a positive effect on IL-1β and RANTES mRNA expression by host cells in a highly relevant animal tuberculosis model.


2012 ◽  
Vol 19 (8) ◽  
pp. 1254-1260 ◽  
Author(s):  
M. L. Thom ◽  
M. McAulay ◽  
H. M. Vordermeier ◽  
D. Clifford ◽  
R. G. Hewinson ◽  
...  

ABSTRACTVaccination of neonatal calves withMycobacterium bovisbacillus Calmette-Guérin (BCG) induces a significant degree of protection against bovine tuberculosis, caused by infection with virulentM. bovis. In two independent experiments, we assessed the duration of the protective immunity induced in calves by neonatal vaccination with BCG Danish. Protection from disease was assessed at 12 and 24 months postvaccination in cattle challenged via the endotracheal route withM. bovis. We also assessed antigen-specific immune responses to assess their utility as correlates of protection. At 12 months postvaccination, significant reductions in lung and lymph node pathologies were observed compared to nonvaccinatedM. bovis-challenged control cattle. At 24 months post-BCG vaccination, there was a reduction in lung and lymph node pathology scores and in bacterial burden. However, when comparing vaccinated and control groups, this did not reach statistical significance. Vaccination induced long-lived antigen (purified protein derivative [PPD])-specific gamma interferon (IFN-γ) release in whole-blood cultures, which remained above baseline levels for more than 20 months (approximately 90 weeks). The number of antigen-specific IFN-γ-secreting central memory T cells present at the time ofM. bovischallenge was significantly higher in vaccinated than in control animals at 12 months postvaccination, but not at 24 months. Vaccination of neonatal calves with BCG Danish induced protective immune responses against bovine TB which were maintained for at least 12 months postvaccination. These studies provide data on the immunity induced by BCG vaccination in calves; the results could inform vaccination strategies for the control of bovine TB in United Kingdom cattle herds.


2002 ◽  
Vol 70 (10) ◽  
pp. 5471-5478 ◽  
Author(s):  
Mark J. Lyons ◽  
Teizo Yoshimura ◽  
David N. McMurray

ABSTRACT Alveolar macrophages are likely the first cell type to encounter Mycobacterium tuberculosis in a pulmonary infection, resulting in the production of chemokines. In order to evaluate this response, alveolar macrophages harvested from nonvaccinated and Mycobacterium bovis BCG-vaccinated guinea pigs were infected in vitro with live M. tuberculosis H37Ra or H37Rv (multiplicity of infection, 1:1) or cultured with lipopolysaccharide (10 μg/ml) for 3, 12, and 24 h. Interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) mRNA expression was determined by real-time PCR. Culture supernatants were assayed for guinea pig IL-8 protein by using a human IL-8 enzyme-linked immunosorbent assay kit. Alveolar macrophages harvested from BCG-vaccinated guinea pigs produced significantly more mRNA and protein for IL-8 than alveolar macrophages harvested from nonvaccinated guinea pigs at 12 and 24 h poststimulation or postinfection. Infection with attenuated M. tuberculosis (H37Ra) stimulated alveolar macrophages isolated from BCG-vaccinated guinea pigs to produce significantly more IL-8 mRNA than did alveolar macrophages infected with a virulent strain (H37Rv) at 12 and 24 h postinfection. Significant MCP-1 mRNA production was also detected in stimulated or infected alveolar macrophages; however, prior vaccination did not significantly affect levels of MCP-1 mRNA. Alveolar macrophages isolated from BCG-vaccinated guinea pigs produced significantly more IL-8 mRNA and protein when stimulated for 24 h with heat-killed H37Ra, heat-killed H37Rv, and H37Rv cell wall, but not mannose-capped lipoarabinomannan (ManLAM), than did cells stimulated with media alone. These observations indicate that prior vaccination may alter very early events in the M. tuberculosis-infected lung.


Sign in / Sign up

Export Citation Format

Share Document