scholarly journals Haemophilus ducreyi LspA Proteins Are Tyrosine Phosphorylated by Macrophage-Encoded Protein Tyrosine Kinases

2008 ◽  
Vol 76 (10) ◽  
pp. 4692-4702 ◽  
Author(s):  
Kaiping Deng ◽  
Jason R. Mock ◽  
Steven Greenberg ◽  
Nicolai S. C. van Oers ◽  
Eric J. Hansen

ABSTRACTThe LspA proteins (LspA1 and LspA2) ofHaemophilus ducreyiare necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-typeH. ducreyicells were incubated with macrophages. LspA proteins in cell-free concentratedH. ducreyiculture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

2005 ◽  
Vol 73 (12) ◽  
pp. 7808-7816 ◽  
Author(s):  
Jason R. Mock ◽  
Merja Vakevainen ◽  
Kaiping Deng ◽  
Jo L. Latimer ◽  
Jennifer A. Young ◽  
...  

ABSTRACTHaemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, has been shown to inhibit phagocytosis of both itself and secondary targets in vitro. Immunodepletion of LspA proteins fromH. ducreyiculture supernatant fluid abolished this inhibitory effect, indicating that the LspA proteins are necessary for the inhibition of phagocytosis byH. ducreyi. Fluorescence microscopy revealed that macrophages incubated with wild-typeH. ducreyi, but not with alspA1 lspA2mutant, were unable to complete development of the phagocytic cup around immunoglobulin G-opsonized targets. Examination of the phosphotyrosine protein profiles of these two sets of macrophages showed that those incubated with wild-typeH. ducreyihad greatly reduced phosphorylation levels of proteins in the 50-to-60-kDa range. Subsequent experiments revealed reductions in the catalytic activities of both Lyn and Hck, two members of the Src family of protein tyrosine kinases that are known to be involved in the proximal signaling steps of Fcγ receptor-mediated phagocytosis. Additional experiments confirmed reductions in the levels of both active Lyn and active Hck in three different immune cell lines, but not in HeLa cells, exposed to wild-typeH. ducreyi. This is the first example of a bacte-rial pathogen that suppresses Src family protein tyrosine kinase activity to subvert phagocytic signaling in hostcells.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4947-4952 ◽  
Author(s):  
Martin Carroll ◽  
Sayuri Ohno-Jones ◽  
Shu Tamura ◽  
Elisabeth Buchdunger ◽  
Jürg Zimmermann ◽  
...  

Abstract CGP 57148 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the ABL and the platelet-derived growth factor receptor (PDGFR) protein tyrosine kinases. We previously showed that CGP 57148 selectively kills p210BCR-ABL–expressing cells. To extend these observations, we evaluated the ability of CGP 57148 to inhibit other activated ABL tyrosine kinases, including p185BCR-ABL and TEL-ABL. In cell-based assays of ABL tyrosine phosphorylation, inhibition of ABL kinase activity was observed at concentrations similar to that reported for p210BCR-ABL. Consistent with the in vitro profile of this compound, the growth of cells expressing activated ABL protein tyrosine kinases was inhibited in the absence of exogenous growth factor. Growth inhibition was also observed with a p185BCR-ABL–positive acute lymphocytic leukemia (ALL) cell line generated from a Philadelphia chromosome–positive ALL patient. As CGP 57148 inhibits the PDGFR kinase, we also showed that cells expressing an activated PDGFR tyrosine kinase, TEL-PDGFR, are sensitive to this compound. Thus, this compound may be useful for the treatment of a variety of BCR-ABL–positive leukemias and for treatment of the subset of chronic myelomonocytic leukemia patients with a TEL-PDGFR fusion protein.


Blood ◽  
1997 ◽  
Vol 90 (12) ◽  
pp. 4947-4952 ◽  
Author(s):  
Martin Carroll ◽  
Sayuri Ohno-Jones ◽  
Shu Tamura ◽  
Elisabeth Buchdunger ◽  
Jürg Zimmermann ◽  
...  

CGP 57148 is a compound of the 2-phenylaminopyrimidine class that selectively inhibits the tyrosine kinase activity of the ABL and the platelet-derived growth factor receptor (PDGFR) protein tyrosine kinases. We previously showed that CGP 57148 selectively kills p210BCR-ABL–expressing cells. To extend these observations, we evaluated the ability of CGP 57148 to inhibit other activated ABL tyrosine kinases, including p185BCR-ABL and TEL-ABL. In cell-based assays of ABL tyrosine phosphorylation, inhibition of ABL kinase activity was observed at concentrations similar to that reported for p210BCR-ABL. Consistent with the in vitro profile of this compound, the growth of cells expressing activated ABL protein tyrosine kinases was inhibited in the absence of exogenous growth factor. Growth inhibition was also observed with a p185BCR-ABL–positive acute lymphocytic leukemia (ALL) cell line generated from a Philadelphia chromosome–positive ALL patient. As CGP 57148 inhibits the PDGFR kinase, we also showed that cells expressing an activated PDGFR tyrosine kinase, TEL-PDGFR, are sensitive to this compound. Thus, this compound may be useful for the treatment of a variety of BCR-ABL–positive leukemias and for treatment of the subset of chronic myelomonocytic leukemia patients with a TEL-PDGFR fusion protein.


1994 ◽  
Vol 14 (1) ◽  
pp. 147-155
Author(s):  
B S Cobb ◽  
M D Schaller ◽  
T H Leu ◽  
J T Parsons

Changes in cellular growth and dramatic alterations in cell morphology and adhesion are common features of cells transformed by oncogenic protein tyrosine kinases, such as pp60src and other members of the Src family. In this report, we present evidence for the stable association of two Src family kinases (pp60src and pp59fyn) with tyrosine-phosphorylated forms of a focal adhesion-associated protein tyrosine kinase, pp125FAK. In Src-transformed chicken embryo cells, most of the pp125FAK was stably complexed with activated pp60src (e.g., pp60(527F). The stable association of pp125FAK with pp60(527F) in vivo required the structural integrity of the Src SH2 domain. The association of pp60(527F) and pp125FAK could be reconstituted in vitro by incubation of normal cell extracts with glutathione S-transferase fusion proteins containing SH2 or SH3/SH2 domains of pp60src. Furthermore, the association of isolated SH2 or SH3/SH2 domains with in vitro 32P-labeled pp125FAK protected the major site of pp125FAK autophosphorylation from digestion with a tyrosine phosphatase, indicating that the autophosphorylation site of pp125FAK participates in binding with Src. Immunoprecipitation of Src family kinases from extracts of normal chicken embryo cells revealed stable complexes of pp59fyn and tyrosine-phosphorylated pp125FAK. These data provide evidence for a direct interaction between two cytoplasmic nonreceptor protein tyrosine kinases and suggest that Src may contribute to changes in pp125FAK regulation in transformed cells. Furthermore, pp125FAK may directly participate in the targeting of pp59fyn or possibly other Src family kinases to focal adhesions in normal cells.


1992 ◽  
Vol 12 (5) ◽  
pp. 2315-2321
Author(s):  
M A Campbell ◽  
B M Sefton

Treatment of B lymphocytes with antibodies to membrane immunoglobulin (Ig) stimulates protein tyrosine phosphorylation. We have examined the phosphorylation in vitro of proteins associated with membrane Ig. The Src family protein tyrosine kinases p53/56lyn, p59fyn, and p56lck are associated with membrane Ig in spleen B cells and B-cell lines and undergo phosphorylation in vitro. The pattern of expression of Src family protein tyrosine kinases in B cells varied. Our studies suggest that multiple kinases can potentially interact with membrane Ig and that within any one B-cell type, all of the Src family kinases expressed can be found in association with membrane Ig. We also observed that the Ig-associated Ig alpha protein, multiple forms of Ig beta, and proteins of 100 and 25 kDa were tyrosine phosphorylated in vitro. The 100- and 25-kDa proteins remain unidentified.


1992 ◽  
Vol 288 (2) ◽  
pp. 395-405 ◽  
Author(s):  
I Gout ◽  
R Dhand ◽  
G Panayotou ◽  
M J Fry ◽  
I Hiles ◽  
...  

PtdIns 3-kinase associates with certain activated protein-tyrosine kinase receptors and with the pp60c-src/polyoma middle-T complex, suggesting that the enzyme is involved in growth regulation. The purified PtdIns 3-kinase appears to have two subunits, of 85 kDa and 110 kDa. Structural analysis at protein and cDNA levels revealed two forms of the 85 kDa subunit, one which associates with PtdIns 3-kinase activity termed p85 alpha, and a protein of unknown function, p85 beta. Both 85 kDa proteins contain src-homology regions 2 and 3 (SH2 and SH3), but lack enzymic activity, suggesting that they may be regulatory subunits of PtdIns 3-kinase. To probe their structure and function further, p85 alpha and p85 beta have been expressed and purified in large amounts from insect cells by using baculovirus vectors. Specific antisera detect p85 alpha, but not p85 beta, associated with PtdIns 3-kinase activity in various cell types. Co-expression studies in insect cells have shown that p85 alpha and p85 beta are substrates for the protein-tyrosine kinases of epidermal growth factor, colony-stimulating factor 1 and c-erbB2 receptors and the src family kinase p59c-fyn. Both p85 alpha and p85 beta form tight complexes with these protein-tyrosine kinases as measured by immunoprecipitation and kinase assays in vitro. The specificity of binding of free p85 is less restricted than that of p85 in the active PtdIns 3-kinase complex with the 110 kDa protein. The relevance of these results to growth-factor-induced PtdIns 3-kinase activation is discussed.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


Blood ◽  
1999 ◽  
Vol 93 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
Michael H. Tomasson ◽  
Ifor R. Williams ◽  
Robert Hasserjian ◽  
Chirayu Udomsakdi ◽  
Shannon M. McGrath ◽  
...  

Abstract The TEL/PDGFβR fusion protein is expressed as the consequence of a recurring t(5;12) translocation associated with chronic myelomonocytic leukemia (CMML). Unlike other activated protein tyrosine kinases associated with hematopoietic malignancies, TEL/PDGFβR is invariably associated with a myeloid leukemia phenotype in humans. To test the transforming properties of TEL/PDGFβR in vivo, and to analyze the basis for myeloid lineage specificity in humans, we constructed transgenic mice with TEL/PDGFβR expression driven by a lymphoid-specific immunoglobulin enhancer-promoter cassette. These mice developed lymphoblastic lymphomas of both T and B lineage, demonstrating that TEL/PDGFβR is a transforming protein in vivo, and that the transforming ability of this fusion is not inherently restricted to the myeloid lineage. Treatment of TEL/PDGFβR transgenic animals with a protein tyrosine kinase inhibitor with in vitro activity against PDGFβR (CGP57148) resulted in suppression of disease and a prolongation of survival. A therapeutic benefit was apparent both in animals treated before the development of overt clonal disease and in animals transplanted with clonal tumor cells. These results suggest that small-molecule tyrosine kinase inhibitors may be effective treatment for activated tyrosine kinase–mediated malignancies both early in the course of disease and after the development of additional transforming mutations.


Sign in / Sign up

Export Citation Format

Share Document