scholarly journals AhrC and Eep Are Biofilm Infection-Associated Virulence Factors in Enterococcus faecalis

2013 ◽  
Vol 81 (5) ◽  
pp. 1696-1708 ◽  
Author(s):  
Kristi L. Frank ◽  
Pascale S. Guiton ◽  
Aaron M. T. Barnes ◽  
Dawn A. Manias ◽  
Olivia N. Chuang-Smith ◽  
...  

ABSTRACTEnterococcus faecalisis part of the human intestinal microbiome and is a prominent cause of health care-associated infections. The pathogenesis of manyE. faecalisinfections, including endocarditis and catheter-associated urinary tract infection (CAUTI), is related to the ability of clinical isolates to form biofilms. To identify chromosomal genetic determinants responsible forE. faecalisbiofilm-mediated infection, we used a rabbit model of endocarditis to test strains with transposon insertions or in-frame deletions in biofilm-associated loci:ahrC,argR,atlA,opuBC,pyrC,recN, andsepF. Only theahrCmutant was significantly attenuated in endocarditis. We demonstrate that the transcriptional regulator AhrC and the protease Eep, which we showed previously to be an endocarditis virulence factor, are also required for full virulence in murine CAUTI. Therefore, AhrC and Eep can be classified as enterococcal biofilm-associated virulence factors. Loss ofahrCcaused defects in early attachment and accumulation of biofilm biomass. Characterization ofahrCtranscription revealed that the temporal expression of this locus observed in wild-type cells promotes initiation of early biofilm formation and the establishment of endocarditis. This is the first report of AhrC serving as a virulence factor in any bacterial species.

mSystems ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Jennifer L. Dale ◽  
Kenneth B. Beckman ◽  
Julia L. E. Willett ◽  
Jennifer L. Nilson ◽  
Nagendra P. Palani ◽  
...  

ABSTRACTEnterococcus faecalisis a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting.E. faecalisOG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival characteristics, intrinsic antibiotic resistance, and virulence traits characteristic of mostE. faecalisgenotypes. To facilitate interrogation of the core enterococcal genetic determinants for competitive fitness in the GI tract, biofilm formation, intrinsic antimicrobial resistance, and survival in the environment, we generated an arrayed, sequence-defined set of chromosomal transposon insertions in OG1RF. We used an orthogonal pooling strategy in conjunction with Illumina sequencing to identify a set of mutants with unique, singleHimar-based transposon insertions. The mutants contained insertions in 1,926 of 2,651 (72.6%) annotated open reading frames and in the majority of hypothetical protein-encoding genes and intergenic regions greater than 100 bp in length, which could encode small RNAs. As proof of principle of the usefulness of this arrayed transposon library, we created a minimal input pool containing 6,829 mutants chosen for maximal genomic coverage and used an approach that we term SMarT (sequence-definedmarinertechnology) transposon sequencing (TnSeq) to identify numerous genetic determinants of bile resistance inE. faecalisOG1RF. These included several genes previously associated with bile acid resistance as well as new loci. Our arrayed library allows functional screening of a large percentage of the genome with a relatively small number of mutants, reducing potential effects of bottlenecking, and enables immediate recovery of mutants following competitions.IMPORTANCEThe robust ability ofEnterococcus faecalisto survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conservedE. faecaliscore genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions inE. faecalisOG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest.


2011 ◽  
Vol 80 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Kristi L. Frank ◽  
Aaron M. T. Barnes ◽  
Suzanne M. Grindle ◽  
Dawn A. Manias ◽  
Patrick M. Schlievert ◽  
...  

ABSTRACTEnterococcus faecalisis a member of the mammalian gastrointestinal microflora that has become a leading cause of nosocomial infections over the past several decades.E. faecalismust be able to adapt its physiology based on its surroundings in order to thrive in a mammalian host as both a commensal and a pathogen. We employed recombinase-basedin vivoexpression technology (RIVET) to identify promoters on theE. faecalisOG1RF chromosome that were specifically activated during the course of infection in a rabbit subdermal abscess model. The RIVET screen identified 249 putativein vivo-activated loci, over one-third of which are predicted to generate antisense transcripts. Three predicted antisense transcripts were detected inin vitro- andin vivo-grown cells, providing the first evidence ofin vivo-expressed antisense RNAs inE. faecalis. Deletions in thein vivo-activated genes that encode glutamate 5-kinase (proB[EF0038]), the transcriptional regulator EbrA (ebrA[EF1809]), and the membrane metalloprotease Eep (eep[EF2380]) did not hinder biofilm formation inin vitroassays. In a rabbit model of endocarditis, the ΔebrAstrain was fully virulent, the ΔproBstrain was slightly attenuated, and the Δeepstrain was severely attenuated. The Δeepvirulence defect could be complemented by the expression of the wild-type gene intrans. Microscopic analysis of early Δeepbiofilms revealed an abundance of small cellular aggregates that were not observed in wild-type biofilms. This work illustrates the use of a RIVET screen to provide information about the temporal activation of genes during infection, resulting in the identification and confirmation of a new virulence determinant in an important pathogen.


2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Keehoon Lee ◽  
Kang-Mu Lee ◽  
Donggeun Kim ◽  
Sang Sun Yoon

ABSTRACT Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546–556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis, including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections.


2014 ◽  
Vol 83 (1) ◽  
pp. 396-404 ◽  
Author(s):  
Jonathan F. Holt ◽  
Megan R. Kiedrowski ◽  
Kristi L. Frank ◽  
Jing Du ◽  
Changhui Guan ◽  
...  

Enterococcus faecalisis a commensal and pathogen of humans and insects. InManduca sexta,E. faecalisis an infrequent member of the commensal gut community, but its translocation to the hemocoel results in a commensal-to-pathogen switch. To investigateE. faecalisfactors required for commensalism, we identifiedE. faecalisgenes that are upregulated in the gut ofM. sextausing recombinase-basedin vivoexpression technology (RIVET). The RIVET screen produced 113 clones, from which we identified 50 genes that are more highly expressed in the insect gut than in culture. The most frequently recovered gene was locus OG1RF_11582, which encodes a 6-phosphogluconolactonase that we designatedpglA. ApglAdeletion mutant was impaired in both pathogenesis and gut persistence inM. sextaand produced enhanced biofilms compared with the wild type in anin vitropolystyrene plate assay. Mutation of four other genes identified by RIVET did not affect persistence in caterpillar guts but led to impaired pathogenesis. This is the first identification of genetic determinants forE. faecaliscommensal and pathogenic interactions withM. sexta. Bacterial factors identified in this model system may provide insight into colonization or persistence in other host-associated microbial communities and represent potential targets for interventions to preventE. faecalisinfections.


2020 ◽  
Vol 9 (22) ◽  
Author(s):  
Adam Schwartz ◽  
Taylor Miller-Ensminger ◽  
Adelina Voukadinova ◽  
Alan J. Wolfe ◽  
Catherine Putonti

ABSTRACT A strain of Enterococcus faecalis was isolated from catheterized urine. Here, we present the draft genome sequence of this isolate, E. faecalis UMB1309. Analysis of the genome revealed multiple genes coding for virulence factors, as well as genes associated with antibiotic resistance.


2013 ◽  
Vol 79 (22) ◽  
pp. 6917-6923 ◽  
Author(s):  
Peter C. H. Feng ◽  
Shanker Reddy

ABSTRACTShiga-toxigenicEscherichia coli(STEC) strains were isolated from a variety of fresh produce, but mostly from spinach, with an estimated prevalence rate of 0.5%. A panel of 132 produce STEC strains were characterized for the presence of virulence and putative virulence factor genes and for Shiga toxin subtypes. About 9% of the isolates were found to have theeaegene, which encodes the intimin binding protein, and most of these belonged to known pathogenic STEC serotypes, such as O157:H7 and O26:H11, or to serotypes that reportedly have caused human illness. Among theeae-negative strains, there were three O113:H21 strains and one O91:H21 strain, which historically have been implicated in illness and therefore may be of concern as well. TheehxAgene, which encodes enterohemolysin, was found in ∼60% of the isolates, and thesaaandsubABgenes, which encode STEC agglutinating adhesin and subtilase cytotoxin, respectively, were found in ∼30% of the isolates. However, the precise roles of these three putative virulence factors in STEC pathogenesis have not yet been fully established. Thestx1aandstx2asubtypes were present in 22% and 56%, respectively, of the strains overall and were the most common subtypes among produce STEC strains. Thestx2dsubtype was the second most common subtype (28% overall), followed bystx2c(7.5%), and only 2 to 3% of the produce STEC strains had thestx2eandstx2gsubtypes. Almost half of the produce STEC strains had only partial serotypes or were untyped, and most of those that were identified belonged to unremarkable serotypes. Considering the uncertainties of some of these Stx subtypes and putative virulence factors in causing human illness, it is difficult to determine the health risk of many of these produce STEC strains.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Alexandra E. Paharik ◽  
Wilmara Salgado-Pabon ◽  
David K. Meyerholz ◽  
Mark J. White ◽  
Patrick M. Schlievert ◽  
...  

ABSTRACT Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Mary C. Moran ◽  
Michael P. Cahill ◽  
Matthew G. Brewer ◽  
Takeshi Yoshida ◽  
Sara Knowlden ◽  
...  

ABSTRACT Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, infective endocarditis, osteoarticular, pleuropulmonary, and device-related infections. Virulence factors secreted by S. aureus, including superantigens and cytotoxins, play significant roles in driving disease. The ability to identify virulence factors present at the site of infection will be an important tool in better identifying and understanding how specific virulence factors contribute to disease. Previously, virulence factor production has been determined by culturing S. aureus isolates and detecting the mRNA of specific virulence factors. We demonstrated for the first time that virulence factors can be directly detected at the protein level from human samples, removing the need to first culture isolated bacteria. Superantigens and cytotoxins were detected and quantified with a Western dot blot assay by using reconstituted skin swabs obtained from patients with atopic dermatitis. This methodology will significantly enhance our ability to investigate the complex host-microbe environment and the effects various therapies have on virulence factor production. Overall, the ability to directly quantify virulence factors present at the site of infection or colonization will enhance our understanding of S. aureus-related diseases and help identify optimal treatments. IMPORTANCE For the first time, we show that secreted staphylococcal virulence factors can be quantified at the protein level directly from skin swabs obtained from the skin of atopic dermatitis patients. This technique eliminates the need to culture Staphylococcus aureus and then test the strain’s potential to produce secreted virulence factors. Our methodology shows that secreted virulence factors are present on the skin of atopic patients and provides a more accurate means of evaluating the physiological impact of S. aureus in inflammatory diseases such as atopic dermatitis.


2019 ◽  
Vol 87 (5) ◽  
Author(s):  
Chance J. Cosgriff ◽  
Chelsea R. White ◽  
Wei Ping Teoh ◽  
James P. Grayczyk ◽  
Francis Alonzo

ABSTRACTGram-positive bacteria process and release small peptides, or pheromones, that act as signals for the induction of adaptive traits, including those involved in pathogenesis. One class of small signaling pheromones is the cyclic autoinducing peptides (AIPs), which regulate expression of genes that orchestrate virulence and persistence in a range of microbes, including staphylococci, listeriae, clostridia, and enterococci. In a genetic screen forStaphylococcus aureussecreted virulence factors, we identified anS. aureusmutant containing an insertion in the geneSAUSA300_1984(mroQ), which encodes a putative membrane-embedded metalloprotease. A ΔmroQmutant exhibited impaired induction of Toll-like receptor 2-dependent inflammatory responses from macrophages but elicited greater production of the inflammatory cytokine interleukin-1β and was attenuated in a murine skin and soft tissue infection model. The ΔmroQmutant phenocopies anS. aureusmutant containing a deletion of the accessory gene regulatory system (Agr), wherein both strains have significantly reduced production of secreted toxins and virulence factors but increased surface protein A abundance. The Agr system controls virulence factor gene expression inS. aureusby sensing the accumulation of AIP via the histidine kinase AgrC and the response regulator AgrA. We provide evidence to suggest that MroQ acts within the Agr pathway to facilitate the optimal processing or export of AIP for signal amplification through AgrC/A and induction of virulence factor gene expression. Mutation of MroQ active-site residues significantly reduces AIP signaling and attenuates virulence. Altogether, this work identifies a new component of the Agr quorum-sensing circuit that is critical for the production ofS. aureusvirulence factors.


2016 ◽  
Vol 199 (5) ◽  
Author(s):  
Christina N. Krute ◽  
Kelly C. Rice ◽  
Jeffrey L. Bose

ABSTRACT In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus. In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB, saeR, and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I (coa) and class II (hla) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus. IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus. Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus. In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation.


Sign in / Sign up

Export Citation Format

Share Document