scholarly journals Coinfection with Heligmosomoides polygyrus Fails To Establish CD8+ T-Cell Immunity against Toxoplasma gondii

2008 ◽  
Vol 76 (3) ◽  
pp. 1305-1313 ◽  
Author(s):  
Imtiaz A. Khan ◽  
Rubeena Hakak ◽  
Karen Eberle ◽  
Peter Sayles ◽  
Louis M. Weiss ◽  
...  

ABSTRACT CD8+ T-cell immunity is important for long-term protection against Toxoplasma gondii infection. However, a Th1 cytokine environment, especially the presence of gamma interferon (IFN-γ), is essential for the development of primary CD8+ T-cell immunity against this obligate intracellular pathogen. Earlier studies from our laboratory have demonstrated that mice lacking optimal IFN-γ levels fail to develop robust CD8+ T-cell immunity against T. gondii. In the present study, induction of primary CD8+ T-cell immune response against T. gondii infection was evaluated in mice infected earlier with Heligmosomoides polygyrus, a gastrointestinal worm known to evoke a polarized Th2 response in the host. In the early stage of T. gondii infection, both CD4 and CD8+ T-cell responses against the parasite were suppressed in the dually infected mice. At the later stages, however, T. gondii-specific CD4+ T-cell immunity recovered, while CD8+ T-cell responses remained low. Unlike in mice infected with T. gondii alone, depletion of CD4+ T cells in the dually infected mice led to reactivation of chronic infection, leading to Toxoplasma-related encephalitis. Our observations strongly suggest that prior infection with a Th2 cytokine-polarizing pathogen can inhibit the development of CD8+ T-cell immune response against T. gondii, thus compromising long-term protection against a protozoan parasite. This is the first study to examine the generation of CD8+ T-cell immune response in a parasitic nematode and protozoan coinfection model that has important implications for infections where a CD8+ T-cell response is critical for host protection and reduced infection pathology.

2002 ◽  
Vol 70 (2) ◽  
pp. 434-443 ◽  
Author(s):  
Lori Casciotti ◽  
Kenneth H. Ely ◽  
Martha E. Williams ◽  
Imtiaz A. Khan

ABSTRACT T-cell immunity is critical for survival of hosts infected with Toxoplasma gondii. Among the cells in the T-cell population, CD8+ T cells are considered the major effector cells against this parasite. It is believed that CD4+ T cells may be crucial for induction of the CD8+-T-cell response against T. gondii. In the present study, CD4−/− mice were used to evaluate the role of conventional CD4+ T cells in the immune response against T. gondii infection. CD4−/− mice infected with T. gondii exhibited lower gamma interferon (IFN-γ) messages in the majority of their tissues. As a result, mortality due to a hyperinflammatory response was prevented in these animals. Interestingly, T. gondii infection induced a normal antigen-specific CD8+-T-cell immune response in CD4−/− mice. No difference in generation of precursor cytotoxic T lymphocytes (pCTL) or in IFN-γ production by the CD8+-T-cell populations from the knockout and wild-type animals was observed. However, the mutant mice were not able to sustain CD8+-T-cell immunity. At 180 days after infection, the CD8+-T-cell response in the knockout mice was depressed, as determined by pCTL and IFN-γ assays. Loss of CD8+-T-cell immunity at this time was confirmed by adoptive transfer experiments. Purified CD8+ T cells from CD4−/− donors that had been immunized 180 days earlier failed to protect the recipient mice against a lethal infection. Our study demonstrated that although CD8+-T-cell immunity can be induced in the absence of conventional CD4+ T cells, it cannot be maintained without such cells.


2008 ◽  
Vol 76 (4) ◽  
pp. 1709-1718 ◽  
Author(s):  
Ariane Rodríguez ◽  
Jaap Goudsmit ◽  
Arjen Companjen ◽  
Ratna Mintardjo ◽  
Gert Gillissen ◽  
...  

ABSTRACT Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus serotype 35 coding for CS (rAd35.CS). The current study was designed to answer the question whether such an effect can be extended to liver-stage antigens (LSA) of Plasmodium falciparum such as LSA-1. Studies with mice have demonstrated that the LSA-1 protein induces strong antibody response but a weak T-cell immunity. We first identified T-cell epitopes in LSA-1 by use of intracellular gamma interferon (IFN-γ) staining and confirmed these epitopes by means of enzyme-linked immunospot assay and pentamer staining. We show that a single immunization with rAd35.LSA-1 induced a strong antigen-specific IFN-γ CD8+ T-cell response but no measurable antibody response. In contrast, vaccinations with the adjuvanted recombinant LSA-1 protein induced remarkably low cellular responses but strong antibody responses. Finally, both priming and boosting of the adjuvanted protein by rAd35 resulted in enhanced T-cell responses without impairing the level of antibody responses induced by the protein immunizations alone. Furthermore, the incorporation of rAd35 in the vaccination schedule led to a skewing of LSA-1-specific antibody responses toward a Th1-type immune response. Our results show the ability of rAd35 to induce potent T-cell immunity in combination with protein in a prime-boost schedule without impairing the B-cell response.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Danielle Minns ◽  
Katie Jane Smith ◽  
Emily Gwyer Findlay

Neutrophils are the most abundant leukocytes in peripheral blood and respond rapidly to danger, infiltrating tissues within minutes of infectious or sterile injury. Neutrophils were long thought of as simple killers, but now we recognise them as responsive cells able to adapt to inflammation and orchestrate subsequent events with some sophistication. Here, we discuss how these rapid responders release mediators which influence later adaptive T cell immunity through influences on DC priming and directly on the T cells themselves. We consider how the release of granule contents by neutrophils—through NETosis or degranulation—is one way in which the innate immune system directs the phenotype of the adaptive immune response.


2006 ◽  
Vol 80 (19) ◽  
pp. 9779-9788 ◽  
Author(s):  
Helen Horton ◽  
Colin Havenar-Daughton ◽  
Deborah Lee ◽  
Erin Moore ◽  
Jianhong Cao ◽  
...  

ABSTRACT Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-γ)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-γ and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-naïve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.


2008 ◽  
Vol 76 (5) ◽  
pp. 2256-2256
Author(s):  
I. A. Khan ◽  
R. Hakak ◽  
K. Eberle ◽  
P. Sayles ◽  
L. M. Weiss ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Badolato-Corrêa ◽  
Fabiana Rabe Carvalho ◽  
Iury Amancio Paiva ◽  
Débora Familiar-Macedo ◽  
Helver Gonçalves Dias ◽  
...  

Background: Zika virus (ZIKV) infection causes for mild and self-limiting disease in healthy adults. In newborns, it can occasionally lead to a spectrum of malformations, the congenital Zika syndrome (CZS). Thus, little is known if mothers and babies with a history of ZIKV infection were able to develop long-lasting T-cell immunity. To these issues, we measure the prevalence of ZIKV T-cell immunity in a cohort of mothers infected to the ZIKV during pregnancy in the 2016–2017 Zika outbreak, who gave birth to infants affected by neurological complications or asymptomatic ones.Results: Twenty-one mothers and 18 children were tested for IFN-γ ELISpot and T-cell responses for flow cytometry assays in response to CD4 ZIKV and CD8 ZIKV megapools (CD4 ZIKV MP and CD8 ZIKV MP). IFN-γ ELISpot responses to ZIKV MPs showed an increased CD4 and CD8 T-cell responses in mothers compared to children. The degranulation activity and IFN-γ-producing CD4 T cells were detected in most mothers, and children, while in CD8 T-cells, low responses were detected in these study groups. The total Temra T cell subset is enriched for IFN-γ+ CD4 T cells after stimulation of CD4 ZIKV MP.Conclusion: Donors with a history of ZIKV infection demonstrated long-term CD4 T cell immunity to ZIKV CD4 MP. However, the same was not observed in CD8 T cells with the ZIKV CD8 MP. One possibility is that the cytotoxic and pro-inflammatory activities of CD8 T cells are markedly demonstrated in the early stages of infection, but less detected in the disease resolution phase, when the virus has already been eliminated. The responses of mothers' T cells to ZIKV MPs do not appear to be related to their children's clinical outcome. There was also no marked difference in the T cell responses to ZIKV MP between children affected or not with CZS. These data still need to be investigated, including the evaluation of the response of CD8 T cells to other ZIKV peptides.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jackrapong Bruminhent ◽  
Supranart Srisala ◽  
Chompunut Klinmalai ◽  
Subencha Pinsai ◽  
Siriorn P. Watcharananan ◽  
...  

Abstract Background Adjustment of immunosuppression is the main therapy for BK polyomavirus (BKPyV)-associated nephropathy (BKPyVAN) after kidney transplantation (KT). Studies of BKPyV-specific T cell immune response are scarce. Here, we investigated BKPyV-specific T cell immunity in KT recipients diagnosed with BKPyVAN. Methods All adult KT recipients with BKPyVAN diagnosed at our institution from January 2017 to April 2018 were included. Laboratory-developed intracellular cytokine assays measuring the percentage of IFN-γ-producing CD4+ and CD8+ T cells, after stimulation with large-T antigen (LT) and viral capsid protein 1 (VP1), were performed both at the time of diagnosis and after adjustment of immunosuppression. Results We included 12 KT recipients diagnosed with BKPyVAN (7 proven, 4 presumptive, and 1 possible). Those with presumptive BKPyVAN had a median plasma BKPyV DNA load of 5.9 log10 copies/ml (interquartile range [IQR]: 4.9–6.1). Adjusted dosing of mycophenolic acid and tacrolimus with (86%) or without (14%) adjunctive therapies were implemented after diagnosis. There was a significantly higher median percentage of IFN-γ-producing CD4+ T cells to LT at a median of 3 (IQR: 1–4) months after adjustment of immunosuppression compared with at the time of diagnosis (0.004 vs. 0.015; p = 0.047). However, the difference between the median percentage of IFN-γ-producing CD4+ T cells to VP1 and CD8+ T cells to LT and VP1 did not reach statistical significance. Four (33%) patients achieved plasma BKPyV DNA clearance, and the remaining eight (67%) patients had persistent BKPyV DNAemia. Although eight (67%) patients developed allograft dysfunction, none required hemodialysis. Conclusions We observed a marginal trend of BKPyV-specific CD4+ T cell recovery after adjustment of immunosuppression in KT recipients diagnosed with BKPyVAN. A further study would be benefited to confirm and better assess BKPyV-specific immune response after KT.


2002 ◽  
Vol 70 (8) ◽  
pp. 4501-4509 ◽  
Author(s):  
Alissa A. Chackerian ◽  
Jennifer M. Alt ◽  
Thushara V. Perera ◽  
Christopher C. Dascher ◽  
Samuel M. Behar

ABSTRACT We report that dissemination of Mycobacterium tuberculosis in the mouse is under host control and precedes the initiation of T-cell immunity. Nine to eleven days after aerosol inoculation, M. tuberculosis disseminates to the pulmonary lymph nodes (LN), where M. tuberculosis-specific T cells are detected 2 to 3 days thereafter. This indicates that the initial spread of bacteria occurs via lymphatic drainage and that the acquired T-cell immune response is generated in the draining LN. Dissemination to peripheral sites, such as the spleen and the liver, occurs 11 to 14 days postinfection and is followed by the appearance of M. tuberculosis-specific T cells in the lung and the spleen. In all cases studied, dissemination to the LN or the spleen preceded activation of M. tuberculosis-specific T cells in that organ. Interestingly, bacteria disseminate earlier from the lungs of resistant C57BL/6 mice than from the lungs of susceptible C3H mice, and consequently, C57BL/6 mice generate an immune response to M. tuberculosis sooner than C3H mice generate an immune response. Thus, instead of spreading infection, early dissemination of M. tuberculosis may aid in the initiation of an appropriate and timely immune response. We hypothesize that this early initiation of immunity following inoculation with M. tuberculosis may contribute to the superior resistance of C57BL/6 mice.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Franz Buchegger ◽  
Steven M. Larson ◽  
Jean-Pierre Mach ◽  
Yves Chalandon ◽  
Pierre-Yves Dietrich ◽  
...  

Growing evidence suggests that the patient’s immune response may play a major role in the long-term efficacy of antibody therapies of follicular lymphoma (FL). Particular long-lasting recurrence free survivals have been observed after first line, single agent rituximab or after radioimmunotherapy (RIT). Rituximab maintenance, furthermore, has a major efficacy in prolonging recurrence free survival after chemotherapy. On the other hand, RIT as a single step treatment showed a remarkable capacity to induce complete and partial remissions when applied in recurrence and as initial treatment of FL or given for consolidation. These clinical results strongly suggest that RIT combined with rituximab maintenance could stabilize the high percentages of patients with CR and PR induced by RIT. While the precise mechanisms of the long-term efficacy of these 2 treatments are not elucidated, different observations suggest that the patient’s T cell immune response could be decisive. With this review, we discuss the potential role of the patient’s immune system under rituximab and RIT and argue that the T cell immunity might be particularly promoted when combining the 2 antibody treatments in the early therapy of FL.


2006 ◽  
Vol 203 (3) ◽  
pp. 607-617 ◽  
Author(s):  
Christine Trumpfheller ◽  
Jennifer S. Finke ◽  
Carolina B. López ◽  
Thomas M. Moran ◽  
Bruno Moltedo ◽  
...  

Current human immunodeficiency virus (HIV) vaccine approaches emphasize prime boost strategies comprising multiple doses of DNA vaccine and recombinant viral vectors. We are developing a protein-based approach that directly harnesses principles for generating T cell immunity. Vaccine is delivered to maturing dendritic cells in lymphoid tissue by engineering protein antigen into an antibody to DEC-205, a receptor for antigen presentation. Here we characterize the CD4+ T cell immune response to HIV gag and compare efficacy with other vaccine strategies in a single dose. DEC-205–targeted HIV gag p24 or p41 induces stronger CD4+ T cell immunity relative to high doses of gag protein, HIV gag plasmid DNA, or recombinant adenovirus-gag. High frequencies of interferon (IFN)-γ– and interleukin 2–producing CD4+ T cells are elicited, including double cytokine-producing cells. In addition, the response is broad because the primed mice respond to an array of peptides in different major histocompatibility complex haplotypes. Long-lived T cell memory is observed. After subcutaneous vaccination, CD4+ and IFN-γ–dependent protection develops to a challenge with recombinant vaccinia-gag virus at a mucosal surface, the airway. We suggest that a DEC-targeted vaccine, in part because of an unusually strong and protective CD4+ T cell response, will improve vaccine efficacy as a stand-alone approach or with other modalities.


Sign in / Sign up

Export Citation Format

Share Document