scholarly journals Identification of Candidates for a Subunit Vaccine against Extraintestinal Pathogenic Escherichia coli

2006 ◽  
Vol 75 (4) ◽  
pp. 1916-1925 ◽  
Author(s):  
Lionel Durant ◽  
Arnaud Metais ◽  
Coralie Soulama-Mouze ◽  
Jean-Marie Genevard ◽  
Xavier Nassif ◽  
...  

ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) strains cause a large spectrum of infections. The majority of ExPEC strains are closely related to the B2 or the D phylogenetic group. The aim of our study was to develop a protein-based vaccine against these ExPEC strains. To this end, we identified ExPEC-specific genomic regions, using a comparative genome analysis, between the nonpathogenic E. coli strain K-12 MG1655 and ExPEC strains C5 (meningitis isolate) and CFT073 (urinary tract infection isolate). The analysis of these genomic regions allowed the selection of 40 open reading frames, which are conserved among B2/D clinical isolates and encode proteins with putative outer membrane localization. These genes were cloned, and recombinant proteins were purified and assessed as vaccine candidates. After immunization of BALB/c mice, five proteins induced a significant protective immunity against a lethal challenge with a clinical E. coli strain of the B2 group. In passive immunization assays, antigen-specific antibodies afforded protection to naive mice against a lethal challenge. Three of these antigens were related to iron acquisition metabolism, an important virulence factor of the ExPEC, and two corresponded to new, uncharacterized proteins. Due to the large number of genetic differences that exists between commensal and pathogenic strains of E. coli, our results demonstrate that it is possible to identify targets that elicit protective immune responses specific to those strains. The five protective antigens could constitute the basis for a preventive subunit vaccine against diseases caused by ExPEC strains.

2001 ◽  
Vol 69 (2) ◽  
pp. 937-948 ◽  
Author(s):  
Lila Lalioui ◽  
Chantal Le Bouguénec

ABSTRACT We recently described a new afimbrial adhesin, AfaE-VIII, produced by animal strains associated with diarrhea and septicemia and by human isolates associated with extraintestinal infections. Here, we report that the afa-8 operon, encoding AfaE-VIII adhesin, from the human blood isolate Escherichia coli AL862 is carried by a 61-kb genomic region with characteristics typical of a pathogenicity island (PAI), including a size larger than 10 kb, the presence of an integrase-encoding gene, the insertion into a tRNA locus (pheR), and the presence of a small direct repeat at each extremity. Moreover, the G+C content of the afa-8 operon (46.4%) is lower than that of the E. coli K-12/MG1655 chromosome (50.8%). Within this PAI, designated PAI IAL862, we identified open reading frames able to code for products similar to proteins involved in sugar utilization. Four probes spanning these sequences hybridized with 74.3% of pathogenicafa-8-positive E. coli strains isolated from humans and animals, 25% of human pathogenic afa-8-negativeE. coli strains, and only 8% of fecal strains (P = 0.05), indicating that these sequences are strongly associated with the afa-8 operon and that this genetic association may define a PAI widely distributed among human and animal afa-8-positive strains. One of the distinctive features of this study is that E. coli AL862 also carries another afa-8-containing PAI (PAI IIAL862), which appeared to be similar in size and genetic organization to PAI IAL862 and was inserted into the pheV gene. We investigated the insertion sites of afa-8-containing PAI in human and bovine pathogenic E. coli strains and found that this PAI preferentially inserted into the pheV gene.


1999 ◽  
Vol 181 (18) ◽  
pp. 5847-5851 ◽  
Author(s):  
Thomas G. Duthy ◽  
Lothar H. Staendner ◽  
Paul A. Manning ◽  
Michael W. Heuzenroeder

ABSTRACT We have sequenced the entire region of DNA required for the biosynthesis of CS5 pili from enterotoxigenic Escherichia coli O115:H40 downstream of the major subunit gene, designatedcsfA (for coli surface factor five A). Five more open reading frames (ORFs) (csfB, csfC,csfE, csfF, and csfD) which are transcribed in the same direction as the major subunit and are flanked by a number of insertion sequence regions have been identified. T7 polymerase-mediated overexpression of the cloned csf ORFs confirmed protein sizes based on the DNA sequences that encode them. The expression of only the csf region in E. coli K-12 resulted in the hemagglutination of human erythrocytes and the cell surface expression of CS5 pili, suggesting that the cluster contains all necessary information for CS5 pilus biogenesis and function.


2001 ◽  
Vol 183 (13) ◽  
pp. 3958-3966 ◽  
Author(s):  
David Šmajs ◽  
George M. Weinstock

ABSTRACT A cosmid library of DNA from colicin Js-sensitive enteroinvasiveEscherichia coli (EIEC) strain O164 was made in colicin Js-resistant strain E. coli VCS257, and colicin Js-sensitive clones were identified. Sensitivity to colicin Js was associated with the carriage of a three-gene operon upstream of and partially overlapping senB. The open reading frames were designated cjrABC (for colicin Js receptor), coding for proteins of 291, 258, and 753 amino acids, respectively. Tn7 insertions in any of them led to complete resistance to colicin Js. A near-consensus Fur box was found upstream ofcjrA, suggesting regulation of the cjroperon by iron levels. CjrA protein was homologous to iron-regulatedPseudomonas aeruginosa protein PhuW, whose function is unknown; CjrB was homologous to the TonB protein fromPseudomonas putida; and CjrC was homologous to a putative outer membrane siderophore receptor from Campylobacter jejuni. Cloning experiments showed that the cjrBand cjrC genes are sufficient for colicin Js sensitivity. Uptake of colicin Js into sensitive bacteria was dependent on the ExbB protein but not on the E. coli K-12 TonB and TolA, -B, and -Q proteins. Sensitivity to colicin Js is positively regulated by temperature via the VirB protein and negatively controlled by the iron source through the Fur protein. Among EIEC strains, two types of colicin Js-sensitive phenotypes were identified that differed in sensitivity to colicin Js by 1 order of magnitude. The difference in sensitivity to colicin Js is not due to differences between the sequences of the CjrB and CjrC proteins.


mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Kaneyoshi Yamamoto ◽  
Yuki Yamanaka ◽  
Tomohiro Shimada ◽  
Paramita Sarkar ◽  
Myu Yoshida ◽  
...  

The 91-amino-acid-residue small-subunit omega (the rpoZ gene product) of Escherichia coli RNA polymerase plays a structural role in the formation of RNA polymerase (RNAP) as a chaperone in folding the largest subunit (β′, of 1,407 residues in length), but except for binding of the stringent signal ppGpp, little is known of its role in the control of RNAP function. After analysis of genomewide distribution of wild-type and RpoZ-defective RNAP by the ChIP-chip method, we found alteration of the RpoZ-defective RNAP inside open reading frames, in particular, of the genes within prophages. For a set of the genes that exhibited altered occupancy of the RpoZ-defective RNAP, transcription was found to be altered as observed by qRT-PCR assay. All the observations here described indicate the involvement of RpoZ in recognition of some of the prophage genes. This study advances understanding of not only the regulatory role of omega subunit in the functions of RNAP but also the regulatory interplay between prophages and the host E. coli for adjustment of cellular physiology to a variety of environments in nature.


1998 ◽  
Vol 66 (9) ◽  
pp. 4411-4417 ◽  
Author(s):  
Debra M. Guyer ◽  
Jyh-Shyang Kao ◽  
Harry L. T. Mobley

ABSTRACT Urinary tract infection is the most frequently diagnosed kidney and urologic disease and Escherichia coli is by far the most common etiologic agent. Uropathogenic strains have been shown to contain blocks of DNA termed pathogenicity islands (PAIs) which contribute to their virulence. We have defined one of these regions of DNA within the chromosome of a highly virulentE. coli strain, CFT073, isolated from the blood and urine of a woman with acute pyelonephritis. The 57,988-bp stretch of DNA has characteristics which define PAIs, including a size greater than 30 kb, the presence of insertion sequences, distinct segmentation of K-12 and J96 origin, GC content (42.9%) different from that of total genomic DNA (50.8%), and the presence of virulence genes (hly and pap). Within this region, we have identified 44 open reading frames; of these 44, 10 are homologous to entries in the complete K-12 genome sequence, 4 are nearly identical to the sequences of E. coli J96 encoding the HlyA hemolysin, 11 encode P fimbriae, and 19 show no homology to J96 or K-12 entries. To determine whether sequences found within the junctions of the PAI of CFT073 were common to other uropathogenic strains ofE. coli, 11 probes were isolated along the length of the PAI and were hybridized to dot blots of genomic DNA isolated from clinical isolates (67 from patients with acute pyelonephritis, 38 from patients with cystitis, 49 from patients with catheter-associated bacteriuria, and 27 from fecal samples). These sequences were found significantly more often in strains associated with the clinical syndromes of acute pyelonephritis (79%) and cystitis (82%) than in those associated with catheter-associated bacteriuria (58%) and in fecal strains (22%) (P < 0.001). From these regions, we have identified a putative iron transport system and genes other than hly and pap that may contribute to the virulent phenotype of uropathogenic E. coli strains.


2007 ◽  
Vol 189 (9) ◽  
pp. 3532-3546 ◽  
Author(s):  
Amanda L. Lloyd ◽  
David A. Rasko ◽  
Harry L. T. Mobley

ABSTRACT Uropathogenic Escherichia coli (UPEC) strains are responsible for the majority of uncomplicated urinary tract infections, which can present clinically as cystitis or pyelonephritis. UPEC strain CFT073, isolated from the blood of a patient with acute pyelonephritis, was most cytotoxic and most virulent in mice among our strain collection. Based on the genome sequence of CFT073, microarrays were utilized in comparative genomic hybridization (CGH) analysis of a panel of uropathogenic and fecal/commensal E. coli isolates. Genomic DNA from seven UPEC (three pyelonephritis and four cystitis) isolates and three fecal/commensal strains, including K-12 MG1655, was hybridized to the CFT073 microarray. The CFT073 genome contains 5,379 genes; CGH analysis revealed that 2,820 (52.4%) of these genes were common to all 11 E. coli strains, yet only 173 UPEC-specific genes were found by CGH to be present in all UPEC strains but in none of the fecal/commensal strains. When the sequences of three additional sequenced UPEC strains (UTI89, 536, and F11) and a commensal strain (HS) were added to the analysis, 131 genes present in all UPEC strains but in no fecal/commensal strains were identified. Seven previously unrecognized genomic islands (>30 kb) were delineated by CGH in addition to the three known pathogenicity islands. These genomic islands comprise 672 kb of the 5,231-kb (12.8%) genome, demonstrating the importance of horizontal transfer for UPEC and the mosaic structure of the genome. UPEC strains contain a greater number of iron acquisition systems than do fecal/commensal strains, which is reflective of the adaptation to the iron-limiting urinary tract environment. Each strain displayed distinct differences in the number and type of known virulence factors. The large number of hypothetical genes in the CFT073 genome, especially those shown to be UPEC specific, strongly suggests that many urovirulence factors remain uncharacterized.


2005 ◽  
Vol 73 (8) ◽  
pp. 4753-4765 ◽  
Author(s):  
Isabel C. A. Scaletsky ◽  
Jane Michalski ◽  
Alfredo G. Torres ◽  
Michelle V. Dulguer ◽  
James B. Kaper

ABSTRACT The O26 serogroup of enteropathogenic Escherichia coli (EPEC) is one of the serogroups most frequently implicated in infant diarrhea and is also common among enterohemorrhagic E. coli (EHEC) strains. The most common O26 strains belong to EPEC/EHEC serotype O26:H11 and are generally Shiga toxin (Stx) positive. Stx-negative E. coli strains that are negative for the EPEC EAF plasmid and bundle-forming pilus (Bfp) are classified as atypical EPEC. Here, we report a novel adhesin present in an stx-negative bfpA-negative atypical EPEC O26:H11 strain isolated from an infant with diarrhea. A cloned 15-kb genomic region from this strain, designated the locus for diffuse adherence (lda), confers diffuse adherence on HEp-2 cells when expressed in E. coli K-12. Sequence analysis of lda revealed a G+C content of 46.8% and 15 open reading frames sharing homology with the E. coli K88 fae and CS31A clp fimbrial operons. The lda region is part of a putative 26-kb genomic island inserted into the proP gene of the E. coli chromosome. Hybridization studies have demonstrated the prevalence of the minor structural subunit gene, ldaH, across E. coli serogroups O5, O26, O111, and O145. A second plasmid-encoded factor that contributed to the Hep-2 adherence of this strain was also identified but was not characterized. Null mutations that abolish adherence to HEp-2 cells can be restored by plasmid complementation. Antiserum raised against the major structural subunit, LdaG, recognizes a 25-kDa protein from crude heat-extracted protein preparations and inhibits the adherence of the E. coli DH5α lda + clone to HEp-2 cells. Electron microscopy revealed a nonfimbrial structure surrounding the bacterial cell.


2001 ◽  
Vol 67 (4) ◽  
pp. 1911-1921 ◽  
Author(s):  
Yuemei Dong ◽  
Jeremy D. Glasner ◽  
Frederick R. Blattner ◽  
Eric W. Triplett

ABSTRACT In an effort to efficiently discover genes in the diazotrophic endophyte of maize, Klebsiella pneumoniae 342, DNA from strain 342 was hybridized to a microarray containing 96% (n = 4,098) of the annotated open reading frames fromEscherichia coli K-12. Using a criterion of 55% identity or greater, 3,000 (70%) of the E. coli K-12 open reading frames were also found to be present in strain 342. Approximately 24% (n = 1,030) of the E. coli K-12 open reading frames are absent in strain 342. For 1.6% (n= 68) of the open reading frames, the signal was too low to make a determination regarding the presence or absence of the gene. Genes with high identity between the two organisms are those involved in energy metabolism, amino acid metabolism, fatty acid metabolism, cofactor synthesis, cell division, DNA replication, transcription, translation, transport, and regulatory proteins. Functions that were less highly conserved included carbon compound metabolism, membrane proteins, structural proteins, putative transport proteins, cell processes such as adaptation and protection, and central intermediary metabolism. Open reading frames of E. coli K-12 with little or no identity in strain 342 included putative regulatory proteins, putative chaperones, surface structure proteins, mobility proteins, putative enzymes, hypothetical proteins, and proteins of unknown function, as well as genes presumed to have been acquired by lateral transfer from sources such as phage, plasmids, or transposons. The results were in agreement with the physiological properties of the two strains. Whole genome comparisons by genomic interspecies microarray hybridization are shown to rapidly identify thousands of genes in a previously uncharacterized bacterial genome provided that the genome of a close relative has been fully sequenced. This approach will become increasingly more useful as more full genome sequences become available.


2006 ◽  
Vol 189 (3) ◽  
pp. 950-957 ◽  
Author(s):  
Tetsuyoshi Inoue ◽  
Ryuji Shingaki ◽  
Shotaro Hirose ◽  
Kaori Waki ◽  
Hirotada Mori ◽  
...  

ABSTRACT Escherichia coli K-12 has the ability to migrate on semisolid media by means of swarming motility. A systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection) was used to identify the genes involved in the swarming motility of this bacterium. Of the 3,985 nonessential gene mutants, 294 were found to exhibit a strongly repressed-swarming phenotype. Further, 216 of the 294 mutants displayed no significant defects in swimming motility; therefore, the 216 genes were considered to be specifically associated with the swarming phenotype. The swarming-associated genes were classified into various functional categories, indicating that swarming is a specialized form of motility that requires a wide variety of cellular activities. These genes include genes for tricarboxylic acid cycle and glucose metabolism, iron acquisition, chaperones and protein-folding catalysts, signal transduction, and biosynthesis of cell surface components, such as lipopolysaccharide, the enterobacterial common antigen, and type 1 fimbriae. Lipopolysaccharide and the enterobacterial common antigen may be important surface-acting components that contribute to the reduction of surface tension, thereby facilitating the swarm migration in the E. coli K-12 strain.


2004 ◽  
Vol 72 (10) ◽  
pp. 5993-6001 ◽  
Author(s):  
György Schneider ◽  
Ulrich Dobrindt ◽  
Holger Brüggemann ◽  
Gábor Nagy ◽  
Britta Janke ◽  
...  

ABSTRACT The K15 capsule determinant of uropathogenic Escherichia coli strain 536 (O6:K15:H31) is part of a novel 79.6-kb pathogenicity island (PAI) designated PAI V536 that is absent from the genome of nonpathogenic E. coli K-12 strain MG1655. PAI V536 shows typical characteristics of a composite PAI that is associated with the pheV tRNA gene and contains the pix fimbriae determinant as well as genes coding for a putative phosphoglycerate transport system, an autotransporter protein, and hypothetical open reading frames. A gene cluster coding for a putative general secretion pathway system, together with a kps K15 determinant, is localized downstream of a truncated pheV gene (′pheV) also present in this chromosomal region. The distribution of genes present on PAI V536 was studied by PCR in different pathogenic and nonpathogenic E. coli isolates of various sources. Analysis of the 20-kb kps locus revealed a so far unknown genetic organization. Generally, the kps K15 gene cluster resembles that of group 2 and 3 capsules, where two conserved regions (regions 1 and 3) are located up- or downstream of a highly variable serotype-specific region (region 2). Interestingly, recombination of a group 2 and 3 determinant may have been involved in the evolution of the K15 capsule-encoding gene cluster. Expression of the K15 capsule is important for virulence in a murine model of ascending urinary tract infection but not for serum resistance of E. coli strain 536.


Sign in / Sign up

Export Citation Format

Share Document