scholarly journals Absence of Platelet Endothelial Cell Adhesion Molecule 1, PECAM-1/CD31,In VivoIncreases Resistance to Salmonella enterica Serovar Typhimurium in Mice

2013 ◽  
Vol 81 (6) ◽  
pp. 1952-1963 ◽  
Author(s):  
Michael D. Lovelace ◽  
May Lin Yap ◽  
Jana Yip ◽  
William Muller ◽  
Odilia Wijburg ◽  
...  

ABSTRACTPECAM-1/CD31 is known to regulate inflammatory responses and exhibit pro- and anti-inflammatory functions. This study was designed to determine the functional role of PECAM-1 in susceptibility to murine primaryin vivoinfection withSalmonella entericaserovar Typhimurium and inin vitroinflammatory responses of peritoneal macrophages. Lectin profiling showed that cellular PECAM-1 and recombinant human PECAM-1-Ig chimera contain high levels of mannose sugars andN-acetylglucosamine. Consistent with this carbohydrate pattern, both recombinant human and murine PECAM-1-Ig chimeras were shown to bindS. Typhimurium in a dose-dependent mannerin vitro. Using oral and fecal-oral transmission models ofS. Typhimurium SL1344 infection, PECAM-1−/−mice were found to be more resistant toS. Typhimurium infection than wild-type (WT) C57BL/6 mice. While fecal shedding ofS. Typhimurium was comparable in wild-type and PECAM-1−/−mice, the PECAM-1-deficient mice had lower bacterial loads in systemic organs such as liver, spleen, and mesenteric lymph nodes than WT mice, suggesting that extraintestinal dissemination was reduced in the absence of PECAM-1. This reduced bacterial load correlated with reduced tumor necrosis factor (TNF), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP) levels in sera of PECAM-1−/−mice. Followingin vitrostimulation of macrophages with either wholeS. Typhimurium, lipopolysaccharide (LPS) (Toll-like receptor 4 [TLR4] ligand), or poly(I·C) (TLR3 ligand), production of TNF and IL-6 by PECAM-1−/−macrophages was reduced. Together, these results suggest that PECAM-1 may have multiple functions in resistance to infection withS. Typhimurium, including binding to host cells, extraintestinal spread to deeper tissues, and regulation of inflammatory cytokine production by infected macrophages.

2001 ◽  
Vol 69 (12) ◽  
pp. 7413-7418 ◽  
Author(s):  
Tahar van der Straaten ◽  
Angela van Diepen ◽  
Kitty Kwappenberg ◽  
Sjaak van Voorden ◽  
Kees Franken ◽  
...  

ABSTRACT Upon contact with host cells, the intracellular pathogenSalmonella enterica serovar Typhimurium promotes its uptake, targeting, and survival in intracellular niches. In this process, the bacterium evades the microbicidal effector mechanisms of the macrophage, including oxygen intermediates. This study reports the phenotypic and genotypic characterization of an S. enterica serovar Typhimurium mutant that is hypersusceptible to superoxide. The susceptible phenotype is due to a MudJ insertion-inactivation of a previously undescribedSalmonella gene designated sspJ that is located between 54.4 and 64 min of the Salmonellachromosome and encodes a 392-amino-acid protein. In vivo, upon intraperitoneal injection of 104 to 107bacteria in C3H/HeN and 101 to 104 bacteria in BALB/c mice, the mutant strain was less virulent than the wild type. Consistent with this finding, during the first hour after ingestion by macrophage-like J774 and RAW264.7 cells in vitro, the intracellular killing of the strain carrying sspJ::MudJ is enhanced fivefold over that of wild-type microorganisms. Wild-type salmonellae displayed significant intracellular replication during the first 24 h after uptake, but sspJ::MudJ mutants failed to do so. This phenotype could be restored to that of the wild type by sspJ complementation. The SspJ protein is found in the cytoplasmic membrane and periplasmic space. Amino acid sequence homology analysis did reveal a leader sequence and putative pyrroloquinoline quinone-binding domains, but no putative protein function. We excluded the possibility that SspJ is a scavenger of superoxide or has superoxide dismutase activity.


2003 ◽  
Vol 71 (6) ◽  
pp. 3196-3205 ◽  
Author(s):  
Charles C. Kim ◽  
Denise Monack ◽  
Stanley Falkow

ABSTRACT Two acidified nitrite-inducible genes of Salmonella enterica serovar Typhimurium were identified with a green fluorescent protein-based promoter-trap screen. The nitrite-inducible promoters were located upstream of loci that we designated nipAB and nipC, which correspond to hcp-hcr (hybrid cluster protein) of Escherichia coli and norA of Alcaligenes eutrophus, respectively. Maximal induction of the promoters by nitrite was dependent on pH. The nipAB promoter was regulated by oxygen in an Fnr-dependent manner. The nipC promoter was also regulated by oxygen but in an Fnr-independent manner. The promoters were upregulated in activated RAW264.7 macrophage-like cells, which produce NO via the inducible nitric oxide synthase (iNOS), and the induction was inhibited by aminoguanidine, an inhibitor of iNOS. Although the nipAB and nipC mutants displayed no defects under a variety of in vitro conditions or in tissue culture infections, they exhibited lower oral 50% lethal doses (LD50s) than did the wild type in C57BL/6J mouse infections. The lower LD50s reflected an unexpected increased ability of small inoculating doses of the mutant bacteria to cause lethal infection 2 to 3 weeks after challenge, compared to a similar challenge dose of wild-type bacteria. We conclude that these genes are regulated by physiological nitrogen oxides and that the absence of these bacterial genes in some way diminishes the ability of mice to clear a low dose infection.


2015 ◽  
Vol 12 (113) ◽  
pp. 20150702 ◽  
Author(s):  
Richard Dybowski ◽  
Olivier Restif ◽  
Alexandre Goupy ◽  
Duncan J. Maskell ◽  
Piero Mastroeni ◽  
...  

Intravenous inoculation of Salmonella enterica serovar Typhimurium into mice is a prime experimental model of invasive salmonellosis. The use of wild-type isogenic tagged strains (WITS) in this system has revealed that bacteria undergo independent bottlenecks in the liver and spleen before establishing a systemic infection. We recently showed that those bacteria that survived the bottleneck exhibited enhanced growth when transferred to naive mice. In this study, we set out to disentangle the components of this in vivo adaptation by inoculating mice with WITS grown either in vitro or in vivo . We developed an original method to estimate the replication and killing rates of bacteria from experimental data, which involved solving the probability-generating function of a non-homogeneous birth–death–immigration process. This revealed a low initial mortality in bacteria obtained from a donor animal. Next, an analysis of WITS distributions in the livers and spleens of recipient animals indicated that in vivo -passaged bacteria started spreading between organs earlier than in vitro -grown bacteria. These results further our understanding of the influence of passage in a host on the fitness and virulence of Salmonella enterica and represent an advance in the power of investigation on the patterns and mechanisms of host–pathogen interactions.


2004 ◽  
Vol 72 (10) ◽  
pp. 5824-5831 ◽  
Author(s):  
Carlos A. Garcia ◽  
Michael Martin ◽  
Suzanne M. Michalek

ABSTRACT The purpose of the present study was to evaluate the ability of an attenuated Salmonella enterica serovar Typhimurium vaccine strain to up-regulate B7-1 and B7-2 on antigen-presenting cells and to examine the functional roles these costimulatory molecules play in mediating immune responses to Salmonella and to an expressed cloned antigen, the saliva-binding region (SBR) of antigen I/II. In vitro stimulation of B cells (B220+), macrophages (CD11b+), and dendritic cells (CD11c+) with S. enterica serovar Typhimurium induced an up-regulation of B7-2 and, especially, B7-1 expression. The in vivo functional roles of B7-1, B7-2, and B7-1/2 were evaluated in BALB/c wild-type and B7-1, B7-2, and B7-1/2 knockout (KO) mice following intranasal immunization with the Salmonella expressing the cloned SBR. Differential requirements for B7-1 and B7-2 were observed upon primary and secondary immunizations. Compared to wild-type controls, B7-1 and B7-2 KO mice had reduced mucosal and systemic anti-Salmonella antibody responses after a single immunization, while only B7-1 KO mice exhibited suppressed anti-Salmonella antibody responses following the second immunization. Mucosal and systemic antibody responses to SBR were reduced following the primary immunization, whereas a compensatory role for either B7-1 or B7-2 was observed after the second immunization. B7-1/2 double KO mice failed to induce detectable levels of mucosal or systemic immunoglobulin A (IgA) or IgG antibody responses to either Salmonella or SBR. These findings demonstrate that B7-1 and B7-2 can play distinct as well as redundant roles for mediating mucosal and systemic antibody responses, which are likely dependent upon the nature of the antigen.


2005 ◽  
Vol 73 (1) ◽  
pp. 459-463 ◽  
Author(s):  
Gary Rowley ◽  
Andrew Stevenson ◽  
Jan Kormanec ◽  
Mark Roberts

ABSTRACT The alternative sigma factor (RpoE σE) enables Salmonella enterica serovar Typhimurium to adapt to stressful conditions, such as oxidative stress, nutrient deprivation, and growth in mammalian tissues. Infection of mice by Salmonella serovar Typhimurium also requires σE. In Escherichia coli, activation of the σE pathway is dependent on proteolysis of the anti-sigma factor RseA and is initiated by DegS. DegS is also important in order for E. coli to cause extraintestinal infection in mice. We constructed a degS mutant of the serovar Typhimurium strain SL1344 and compared its behavior in vitro and in vivo with those of its wild-type (WT) parent and an isogenic rpoE mutant. Unlike E. coli degS strains, the Salmonella serovar Typhimurium degS strain grew as well as the WT strain at 42°C. The degS mutant survived very poorly in murine macrophages in vitro and was highly attenuated compared with the WT strain for both the oral and parenteral routes of infection in mice. However, the degS mutant was not as attenuated as the serovar Typhimurium rpoE mutant: 100- to 1,000-fold more degS bacteria than rpoE bacteria were present in the livers and spleens of mice 24 h after intraperitoneal challenge. In most assays, the rpoE mutant was more severely affected than the degS mutant and a σE-dependent reporter gene was more active in the degS mutant than the rpoE strain. These findings indicate that degS is important for activation of the σE pathway in serovar Typhimurium but that alternative pathways for σE activation probably exist.


2002 ◽  
Vol 70 (5) ◽  
pp. 2614-2621 ◽  
Author(s):  
Angela van Diepen ◽  
Tahar van der Straaten ◽  
Steven M. Holland ◽  
Riny Janssen ◽  
Jaap T. van Dissel

ABSTRACT Salmonella enterica serovar Typhimurium is a gram-negative, facultative intracellular pathogen that predominantly invades mononuclear phagocytes and is able to establish persistent infections. One of the innate defense mechanisms of phagocytic cells is the production of reactive oxygen species, including superoxide. S. enterica serovar Typhimurium has evolved mechanisms to resist such radicals, and these mechanisms could be decisive in its ability to survive and replicate within macrophages. Recently, we described a superoxide-hypersusceptible S. enterica serovar Typhimurium mutant strain, DLG294, that carries a transposon in sspJ, resulting in the lack of expression of SspJ, which is necessary for resistance against superoxide and replication within macrophages. Here we show that DLG294, which is a 14028s derivative, hardly induced any granulomatous lesions in the livers upon subcutaneous infection of C3H/HeN (Ityr) mice with 3 × 104 bacteria and that its bacterial counts were reduced by 3 log units compared to those of wild-type S. enterica serovar Typhimurium 14028s on day 5 after infection. In contrast, DLG294 replicated like wild-type S. enterica serovar Typhimurium 14028s and induced a phenotypically similar liver pathology in p47phox−/− mice, which are deficient in the p47phox subunit of the NADPH oxidase complex and which do not produce superoxide. Consistent with these results, DLG294 reached bacterial counts identical to those of wild-type S. enterica serovar Typhimurium 14028s in bone marrow-derived macrophages from p47phox−/− mice and in X-CGD PLB-985 cells at 24 h after challenge. These results indicate that SspJ plays a role in the bacterium's resistance to oxidative stress and in the survival and replication of S. enterica serovar Typhimurium both in vitro and in vivo.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 3033-3043 ◽  
Author(s):  
Kazutaka Hayashida ◽  
William C. Parks ◽  
Pyong Woo Park

Heparan sulfate binds to and regulates many inflammatory mediators in vitro, suggesting that it serves an important role in directing the progression and outcome of inflammatory responses in vivo. Here, we evaluated the role of syndecan-1, a major heparan sulfate proteoglycan, in modulating multiorgan host injury responses in murine endotoxemia. The extent of systemic inflammation was similar between endotoxemic syndecan-1–null and wild-type mice. However, high levels of CXC chemokines (KC and MIP-2), particularly at later times after LPS, were specifically sustained in multiple organs in syndecan-1–null mice and associated with exaggerated neutrophilic inflammation, organ damage, and lethality. Syndecan-1 shedding was activated in several organs of endotoxemic wild-type mice, and this associated closely with the removal of tissue-bound CXC chemokines and resolution of accumulated neutrophils. Moreover, administration of a shedding inhibitor exacerbated disease by impeding the removal of CXC chemokines and neutrophils, whereas administration of heparan sulfate inhibited the accumulation of CXC chemokines and neutrophils in tissues and attenuated multiorgan injury and lethality. These data show that syndecan-1 shedding is a critical endogenous mechanism that facilitates the resolution of neutrophilic inflammation by aiding the clearance of proinflammatory chemokines in a heparan sulfate–dependent manner.


2011 ◽  
Vol 79 (12) ◽  
pp. 5027-5038 ◽  
Author(s):  
Qingke Kong ◽  
David A. Six ◽  
Qing Liu ◽  
Lillian Gu ◽  
Kenneth L. Roland ◽  
...  

ABSTRACTLipopolysaccharide (LPS), composed of lipid A, core, and O-antigen, is a major virulence factor ofSalmonella entericaserovar Typhimurium, with lipid A being a major stimulator to induce the proinflammatory response via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. WhileSalmonella msbBmutants lacking the myristate chain in lipid A were investigated widely as an anticancer vaccine, inclusion of themsbBmutation in aSalmonellavaccine to deliver heterologous antigens has not yet been investigated. We introduced themsbBmutation alone or in combination with mutations in other lipid A acyl chain modification genes encoding PagL, PagP, and LpxR into wild-typeS. entericaserovar Typhimurium. ThemsbBmutation reduced virulence, while thepagL,pagP, andlpxRmutations did not affect virulence in themsbBmutant background when administered orally to BALB/c mice. Also, all mutants exhibited sensitivity to polymyxin B but did not display sensitivity to deoxycholate. LPS derived frommsbBmutants induced less inflammatory responses in human Mono Mac 6 and murine macrophage RAW264.7 cellsin vitro. However, anmsbBmutant did not decrease the induction of inflammatory responses in mice compared to the levels induced by the wild-type strain, whereas anmsbB pagPmutant induced less inflammatory responsesin vivo. The mutations were moved to an attenuatedSalmonellavaccine strain to evaluate their effects on immunogenicity. Lipid A modification caused by themsbBmutation alone and in combination withpagL,pagP, andlpxRmutations led to higher IgA production in the vaginal tract but still retained the same IgG titer level in serum to PspA, a test antigen fromStreptococcus pneumoniae, and to outer membrane proteins (OMPs) fromSalmonella.


2002 ◽  
Vol 70 (9) ◽  
pp. 5312-5315 ◽  
Author(s):  
Laura M. Sly ◽  
Donald G. Guiney ◽  
Neil E. Reiner

ABSTRACT Vitamin D3 (1,25-dihydroxycholecalciferol) induced the phagocyte oxidative burst and intracellular killing of Salmonella enterica serovar Typhimurium in a phosphatidylinositol 3-kinase-dependent manner. The antimicrobial effect was more pronounced for Salmonella SodCI and SodCII mutants, confirming the role of the phagocyte oxidase in the vitamin D3 effect. The results for an in vitro system with human THP-1 cells correlate with in vivo virulence data for mice and show that both the SodCI and SodCII enzymes are required to protect against the oxidative burst.


2017 ◽  
Vol 86 (1) ◽  
Author(s):  
Ana Herrero-Fresno ◽  
Irene Cartas Espinel ◽  
Malene Roed Spiegelhauer ◽  
Priscila Regina Guerra ◽  
Karsten Wiber Andersen ◽  
...  

ABSTRACTIn a previous study, a novel virulence gene,bstA, identified in aSalmonella entericaserovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all publishedSalmonella entericaserovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction inS. Dublin, a mutant where this gene was deleted (S. Dublin ΔbstA) and a mutant which was further genetically complemented withbstA(S. Dublin 3246-C) were constructed and tested in models ofin vitroandin vivoinfection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain ofS. Typhimurium ST313, the lack ofbstAwas found to be associated with increased virulence inS. Dublin. Thus,S. Dublin ΔbstAshowed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections,S. Dublin ΔbstAwas more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion ofbstAdid not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and theS. Dublin ΔbstAmutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack ofbstAaffects the pathogenicity ofS. Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar.


Sign in / Sign up

Export Citation Format

Share Document