scholarly journals Cholera Toxin and Escherichia coli Heat-Labile Enterotoxin, but Not Their Nontoxic Counterparts, Improve the Antigen-Presenting Cell Function of Human B Lymphocytes

2009 ◽  
Vol 77 (5) ◽  
pp. 1924-1935 ◽  
Author(s):  
Donatella R. M. Negri ◽  
Dora Pinto ◽  
Silvia Vendetti ◽  
Mario Patrizio ◽  
Massimo Sanchez ◽  
...  

ABSTRACT B lymphocytes play an important role in the immune response induced by mucosal adjuvants. In this study we investigated the in vitro antigen-presenting cell (APC) properties of human B cells upon treatment with cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) and nontoxic counterparts of these toxins, such as the B subunit of CT (CT-B) and the mutant of LT lacking ADP ribosyltransferase activity (LTK63). Furthermore, forskolin (FSK), a direct activator of adenylate cyclase, and cyclic AMP (cAMP) analogues were used to investigate the role of the increase in intracellular cAMP caused by the A subunit of CT and LT. B lymphocytes were cultured with adjuvants and polyclonal stimuli necessary for activation of B cells in the absence of CD4 T cells. Data indicated that treatment with CT, LT, FSK, or cAMP analogues, but not treatment with CT-B or LTK63, upregulated surface activation markers on B cells, such as CD86 and HLA-DR, and induced inhibition of the proliferation of B cells at early time points, while it increased cell death in long-term cultures. Importantly, B cells treated with CT, LT, or FSK were able to induce pronounced proliferation of both CD4+ and CD8+ allogeneic T cells compared with untreated B cells and B cells treated with CT-B and LTK63. Finally, only treatment with toxins or FSK induced antigen-specific T-cell proliferation in Mycobacterium tuberculosis purified protein derivative or tetanus toxoid responder donors. Taken together, these results indicated that the in vitro effects of CT and LT on human B cells are mediated by cAMP.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


1975 ◽  
Vol 142 (5) ◽  
pp. 1327-1333 ◽  
Author(s):  
G Opelz ◽  
M Kiuchi ◽  
M Takasugi ◽  
P I Terasaki

The background stimulation universally seen when lymphocytes are cultured in vitro has been shown to be markedly lowered by reducing the proportion of B lymphocytes. B-rich fractions of lymphocytes had extremely high background stimulation. It is concluded that stimulation of T cells, probably by autologous B cells, provides the most probable explanation for the findings described.


Blood ◽  
1993 ◽  
Vol 81 (12) ◽  
pp. 3343-3349 ◽  
Author(s):  
BK Link ◽  
GJ Weiner

Abstract Bispecific monoclonal antibodies (bsabs) recognizing both CD3 and a tumor antigen can redirect T-cell-mediated cytotoxicity toward cells bearing that antigen. Such bsabs have been shown to be more effective than monospecific monoclonal antibodies (MoAbs) at preventing tumor growth in animal models of B-cell malignancy. The current studies describe the production and preliminary evaluation of a bsab designed to induce the lysis of malignant human B cells by human T cells. The bsab was obtained from a hybrid-hybridoma cell line produced by fusing OKT3-secreting hybridoma cells with hybridoma cells that secrete 1D10. 1D10 is an MoAb that recognizes an antigen found on a majority of malignant human B cells that has not been detected to a significant degree on normal resting or activated lymphocytes. High performance liquid chromatography (HPLC) was used to separate bsab from monospecific antibodies that were also present in the hybrid-hybridoma antibody product. The bsab was then evaluated in vitro for its ability to induce lysis of malignant B cells by activated T cells. The bsab consistently induced extensive lysis in vitro of 1D10 (+) cells, including both cell lines and cells obtained from patients with a variety of B-cell malignancies. No such effect was seen with activated T cells alone or activated T cells with monospecific antibody. No increased lysis was seen with 1D10 (-) cell lines. The bsab also mediated lysis of malignant B cells by autologous T cells. We conclude bsab containing an OKT3 arm and a 1D10 arm can induce T-cell-mediated lysis in a manner that is both potent and specific. This supports further evaluation of this bsab as a potential immunotherapy of B-cell malignancy.


1989 ◽  
Vol 169 (1) ◽  
pp. 255-268 ◽  
Author(s):  
Z M Sthoeger ◽  
M Wakai ◽  
D B Tse ◽  
V P Vinciguerra ◽  
S L Allen ◽  
...  

CD5-expressing B lymphocytes from patients with selected chronic lymphoproliferative disorders were used to determine whether monoclonal populations of CD5+ human B cells produce autoantibodies. CD5+ B cells from 19 patients with chronic lymphocytic leukemia (CLL) and one with diffuse well-differentiated lymphocytic lymphoma (DWDL) were cultured, with and without mitogenic stimulation, to obtain Ig from these cells. 17 of the 20 samples produced Ig in vitro. mAb from nine of the 17 patients were reactive with either IgG, ssDNA, or dsDNA. In every instance, the autoantibodies displayed monotypic L chain usage that correlated precisely with the L chain expressed on the CD5+ leukemic B cell surface. These monoclonal autoantibodies varied in their degree of antigenic specificity; some were quite specific, reacting with only one antigen, whereas others were polyspecific, reacting with two or all three autoantigens tested. Three features distinguish these autoantibodies from those observed in prior studies of CD5+ B cells. First, they are clearly the products of monoclonal populations of CD5+ cells; second, several react with dsDNA, a specificity not previously reported and often seen in association with significant autoimmune disorders; and third, two of the monoclonal autoantibodies secreted by the CD5+ clones were of the IgG class. Although not all of the Ig-producing, CD5-expressing clones elaborated mAbs reactive with the autoantigens tested, greater than 50% did. It is possible that with a broader autoantigenic panel or with larger quantities of CLL/DWDL-derived Ig, even more autoantibody-producing clones might be identified. These studies may have important implications for the antigenic specificity of subsets of human B lymphocytes as well as for lymphoproliferative and autoimmune disorders in general.


2016 ◽  
Vol 216 (1) ◽  
pp. 17-19 ◽  
Author(s):  
Paolo Pierobon ◽  
Ana-Maria Lennon-Duménil

Using an exquisite cell imaging approach based on DNA nanosensors, Spillane and Tolar (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201607064) explore how the physical properties of antigen-presenting cell surfaces affect how B cells internalize surface-tethered antigens. Soft and flexible surfaces promote mechanical force-mediated antigen extraction, whereas stiff surfaces lead to enzyme-mediated antigen release before subsequent internalization.


2010 ◽  
Vol 7 (1) ◽  
pp. 155 ◽  
Author(s):  
Dennis Revie ◽  
Michael O Alberti ◽  
John G Prichard ◽  
Ann S Kelley ◽  
S Zaki Salahuddin

1999 ◽  
Vol 18 (10) ◽  
pp. 619-624 ◽  
Author(s):  
A De Santiago ◽  
M Aguilar-Santelises

Organotin compounds (OTC) are organometallic compounds with vast industrial and agriculture applications that give rise to ubiquitous environmental contamination. OTC are immunotoxic, but most studies have been performed in rodents and almost exclusively focused on T cell immunity. Humans can be exposed to OTC by inhalation, absorption, and consumption of contaminated food and water. To analyse the effects of OTC in human immune tissue, we isolated B cells from tonsils and exposed them to five OTC at various concentrations, during in vitro culture. Non-stimulated B cells were killed by 100 nM of all tested OTC after 8 h in vitro culture, under sub-optimal conditions, except TET. OTC also decreased the proliferation of tonsillar B lymphocytes stimulated with Staphylococcus aureus Cowan 1 (SAC) and IL-2, when present at 100 nM and higher concentrations. IgM secretion was reduced in stimulated cell cultures exposed to 100 nM dibutyltin chloride (DBT). Accordingly, increased phosphatidylserine exposure demonstrated that 100 nM TPT and DBT induced B cells to die by apoptosis. These data indicate that human B cells are diminished in their capacity to survive, proliferate and differentiate in the presence of OTC in vitro.


1972 ◽  
Vol 136 (4) ◽  
pp. 737-760 ◽  
Author(s):  
Marc Feldmann

The mechanism of interaction of T and B lymphocytes was investigated in an in vitro hapten carrier system using culture chambers with two compartments separated by a cell impermeable nucleopore membrane. Because specific cell interaction occurred efficiently across this membrane, contact of T and B lymphocytes was not essential for cooperation which must have been mediated by a subcellular component or "factor." By using different lymphoid cell populations in the lower culture chamber and activated thymus cells in the upper chamber (with antigen present in both), it was found that the antigen-specific mediator acted indirectly on B cells, through the agency of macrophages. Macrophages which had been cultured in the presence of activated T cells and antigen acquired the capacity to specifically induce antibody responses in B cell-containing lymphoid populations. Trypsinization of these macrophages inhibited their capacity to induce immune responses, indicating that the mediator of cell cooperation is membrane bound. By using antisera to both the haptenic and carrier determinants of the antigen as blocking reagents, it was demonstrated that the whole antigen molecule was present on the surface of macrophages which had been exposed to activated T cells and antigen. Because specifically activated T cells were essential a component of the antigen-specific mediator must be derived from these cells. By using anti-immunoglobulin sera as inhibitors of the binding of the mediator to macrophages, the T cell component was indeed found to contain both κ- and µ-chains and was thus presumably a T cell-derived immunoglobulin. It was proposed that cell cooperation is mediated by complexes of T cell IgM and antigen, bound to the surface of macrophage-like cells, forming a lattice of appropriately spaced antigenic determinants. B cells become immunized by interacting with this surface. With this mechanism of cell cooperation, the actual pattern of antigen-B cell receptor interactions in immunization would be the same with both thymus-dependent and independent antigens. An essential feature of the proposed mechanism of cell cooperation is that macrophage-B cell interaction must occur at an early stage of the antibody response, a concept which is supported by many lines of evidence. Furthermore this mechanism of cell interaction can be elaborated to explain certain phenomena such as the highly immunogenic macrophage-bound antigen, antigenic competition, the distinction between immunity and tolerance in B lymphocytes, and the possible mediation of tolerance by T lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document