scholarly journals Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption.

1991 ◽  
Vol 59 (12) ◽  
pp. 4562-4569 ◽  
Author(s):  
R Rosqvist ◽  
A Forsberg ◽  
H Wolf-Watz
PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259837
Author(s):  
Zora Novakova ◽  
Daria Khuntsaria ◽  
Marketa Gresova ◽  
Jana Mikesova ◽  
Barbora Havlinova ◽  
...  

Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.


2007 ◽  
Vol 35 (2) ◽  
pp. 239-241 ◽  
Author(s):  
Y. Yan ◽  
J.M. Backer

The class III PI3K (phosphoinositide 3-kinase), Vps34 (vacuolar protein sorting 34), was first identified as a regulator of vacuolar hydrolase sorting in yeast. Unlike other PI3Ks, the Vps34 lipid kinase specifically utilizes phosphatidylinositol as a substrate, producing the single lipid product PtdIns3P. While Vps34 has been studied for some time in the context of endocytosis and vesicular trafficking, it has more recently been implicated as an important regulator of autophagy, trimeric G-protein signalling, and the mTOR (mammalian target of rapamycin) nutrient-sensing pathway. The present paper will focus on studies that describe the regulation of hVps34 (human Vps34) intracellular targeting and enzymatic activity in yeast and mammalian cells.


1991 ◽  
Vol 19 (4) ◽  
pp. 1131-1132 ◽  
Author(s):  
Roland Rosqvist ◽  
Åke Forsberg ◽  
Hans Wolf-Watz

2018 ◽  
Author(s):  
Shahar Bracha ◽  
Karoliina Hassi ◽  
Paul D. Ross ◽  
Stuart Cobb ◽  
Lilach Sheiner ◽  
...  

Protein therapy has the potential to alleviate many neurological diseases; however, delivery mechanisms for the central nervous system (CNS) are limited, and intracellular delivery poses additional hurdles. To address these challenges, we harnessed the protist parasite Toxoplasma gondii, which can migrate into the CNS and secrete proteins into cells. Using a fusion protein approach, we engineered T. gondii to secrete therapeutic proteins for human neurological disorders. We tested two secretion systems, generated fusion proteins that localized to the secretory organelles of T. gondii and assessed their intracellular targeting in various mammalian cells including neurons. We show that T. gondii expressing GRA16 fused to the Rett syndrome protein MeCP2 deliver a fusion protein that mimics the endogenous MeCP2, binding heterochromatic DNA in neurons. This demonstrates the potential of T. gondii as a therapeutic protein vector, which could provide either transient or chronic, in situ synthesis and delivery of intracellular proteins to the CNS.


Author(s):  
Dale E. McClendon ◽  
Paul N. Morgan ◽  
Bernard L. Soloff

It has been observed that minute amounts of venom from the brown recluse spider, Loxosceles reclusa, are capable of producing cytotoxic changes in cultures of certain mammalian cells (Morgan and Felton, 1965). Since there is little available information concerning the effect of venoms on susceptible cells, we have attempted to characterize, at the electron microscope level, the cytotoxic changes produced by the venom of this spider.Cultures of human epithelial carcinoma cells, strain HeLa, were initiated on sterile, carbon coated coverslips contained in Leighton tubes. Each culture was seeded with approximately 1x105 cells contained in 1.5 ml of a modified Eagle's minimum essential growth medium prepared in Hank's balanced salt solution. Cultures were incubated at 36° C. for three days prior to the addition of venom. The venom was collected from female brown recluse spiders and diluted in sterile saline. Protein determinations on the venom-were made according to the spectrophotometric method of Waddell (1956). Approximately 10 μg venom protein per ml of fresh medium was added to each culture after discarding the old growth medium. Control cultures were treated similarly, except that no venom was added. All cultures were reincubated at 36° C.


Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Sign in / Sign up

Export Citation Format

Share Document