Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells.

1996 ◽  
Vol 64 (5) ◽  
pp. 1614-1620 ◽  
Author(s):  
C A Gaydos ◽  
J T Summersgill ◽  
N N Sahney ◽  
J A Ramirez ◽  
T C Quinn
2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mieko Oka ◽  
Nobuhiko Ohno ◽  
Takakazu Kawamata ◽  
Tomohiro Aoki

Introduction: Intracranial aneurysm (IA) affects 1 to 5 % in general public and becomes the primary cause of subarachnoid hemorrhage, the most severe form of stroke. However, currently, no drug therapy is available for IAs to prevent progression and rupture of lesions. Elucidation of mechanisms underlying the disease is thus mandatory. Considering the important role of vascular smooth muscle cells (SMCs) in the maintenance of stiffness of arterial walls and also in the pathogenesis of atherosclerosis via mediating inflammatory responses, we in the present study analyzed morphological or phenotypical changes of SMCs during the disease development in the lesions. Methods: We subjected rats to an IA model in which lesions are induced by increase of hemodynamic force loading on intracranial arterial bifurcations and performed histopathological analyses of induced lesions including the electron microscopic examination. We then immunostained specimens from induced lesions to explore factors responsible for dedifferentiation or migration of SMCs. In vitro study was also done to examine effect of some candidate factors on dedifferentiation or migration of cultured SMCs. Results: We first found the accumulation of SMCs underneath the endothelial cell layer mainly at the neck portion of the lesion. These cells was positive for the embryonic form of myosin heavy chain, a marker for the dedifferentiated SMCs, and the expression of pro-inflammatory factors like TNF-α. In immunostaining to explore the potential factor regulating the dedifferentiation of SMCs, we found that Platelet-derived growth factor-BB (PDGF-BB) was expressed in endothelial cells at the neck portion of IA walls. Consistently, recombinant PDGF-BB could promote the dedifferentiate of SMCs and chemo-attracted them in in vitro. Finally, in the stenosis model of the carotid artery, PDGF-BB expression was induced in endothelial cells in which high wall shear stress was loaded and the dedifferentiation of SMCs occurred there. Conclusions: The findings from the present study imply the role of dedifferentiated SMCs partially recruited by PDGF-BB from endothelial cells in the formation of inflammatory microenvironment at the neck portion of IA walls, leading to the progression of the disease.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 373-378 ◽  
Author(s):  
AI Schafer ◽  
H Takayama ◽  
S Farrell ◽  
MA Jr Gimbrone

Abstract When arachidonic acid metabolism is studied during platelet-endothelial interactions in vitro, the predominant cyclooxygenase end products of each cell type (thromboxane B2 and 6-keto-prostaglandin-F1 alpha, respectively) are essentially completely recovered in the cell-free supernatants of these reactions. In contrast, 50% of 12-hydroxy- 5,8,10,14-eicosatetraenoic acid (12-HETE), the major lipoxygenase metabolite from platelets, is released into the cell-free supernatant. In investigating the basis of this observation, we have found that platelet lipoxygenase metabolites were generated to the same extent during these coincubations but became rapidly incorporated into the endothelial cells. The endothelial cell-associated 12-HETE was present not only as free fatty acid, but was also incorporated into cellular phospholipids and triglycerides. When purified 3H-12-HETE, 3H-5-HETE (the major hydroxy acid lipoxygenase product of leukocytes), and 3H- arachidonic acid (the common precursor of these metabolites) were individually incubated with suspensions of cultured bovine aortic endothelial cells or smooth muscle cells, different patterns of intracellular lipid distribution were found. In endothelial cells, 12- HETE was incorporated equally into phospholipids and triglycerides, whereas 5-HETE was incorporated preferentially into triglycerides, and arachidonic acid was incorporated into phospholipids. In smooth muscle cells, both 12-HETE and 5-HETE showed more extensive incorporation into triglycerides. The rapid and characteristic incorporation and esterification of platelet and leukocyte monohydroxy fatty acid lipoxygenase products by endothelial and smooth muscle cells suggests a possible physiologic role for these processes in regulating vascular function.


2000 ◽  
Vol 152 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Jörg Kotzerke ◽  
Ralf Gertler ◽  
Inga Buchmann ◽  
Regine Baur ◽  
Vinzenz Hombach ◽  
...  

1985 ◽  
Vol 101 (1) ◽  
pp. 43-52 ◽  
Author(s):  
I M Herman ◽  
P A D'Amore

We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.


1982 ◽  
Vol 2 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Tony Jer-Fu Lee ◽  
L. R. Kinkead ◽  
S. Sarwinski

This study examines, using an in vitro tissue bath technique, the nature of the transmitter mechanism(s) in the pig cerebral artery. Of the arteries with intact endothelium, about 25% relaxed on application of acetylcholine (ACh) at low concentration (3 × 10−7 to 3 × 10−6 M) and constricted at concentrations exceeding 10−5 M. The remaining arterial preparations either constricted (61%) or exhibited no response (14%) at any concentration of ACh tested (3 × 10−7 to 3 × 10−3 M). On the other hand, none of the arteries without endothelium relaxed at any concentration of ACh tested (3 × 10−7 to 3 × 10−3 M); of these, 90% constricted and 10% exhibited no response. These results show that ACh-induced cerebral vasodilation is dependent on endothelial cells and the direct action of ACh on the vascular smooth muscle cells is constriction. Contrary to findings in the large cerebral arteries of the cat and several other species, about 90% of the pig cerebral arteries, with or without endothelium, dilated upon application of norepinephrine (NE) at low concentration (10−7 to 3 × 10−5 M) and constricted at concentrations exceeding 3 × 10−5 M. The NE dose–response relationships were not different in arteries with and without endothelial cells, indicating that the NE-induced vasodilation was independent of the endothelial cells. The relaxation and constriction were blocked by the respective β- and α-receptor antagonists, suggesting that both responses resulted from direct stimulation by NE of β and α receptors on the smooth muscle cells. Transmural nerve stimulation (TNS) consistently induced vasodilation of the arteries whether or not the endothelial cells were present. The vasodilation was abolished by tetrodotoxin (TTX) and cold storage denervation. The TNS-induced vasodilation was not smaller in arteries without endothelium than in those with endothelium. This suggests that TNS-induced vasodilation was independent of the endothelial cells. When examined histochemically, the pig cerebral artery exhibited rich catecholamine fluorescence. Biochemical assays indicate that NE is the primary catecholamine. However, the TNS-induced vasodilation was not affected by atropine, guanethidine, or propranolol, nor prevented by reserpine. It is suggested that an as yet unidentified transmitter is responsible for the TNS-induced vasodilation. Results of this study suggest that the nerve-released ACh is a potential vasoconstrictor transmitter and that NE is a potential vasodilator transmitter in the large cerebral artery of the pig. The neurogenic control of the pig cerebral circulation may be different from that of other species, including humans.


Sign in / Sign up

Export Citation Format

Share Document