scholarly journals Norepinephrine and Acetylcholine Transmitter Mechanisms in Large Cerebral Arteries of the Pig

1982 ◽  
Vol 2 (4) ◽  
pp. 439-450 ◽  
Author(s):  
Tony Jer-Fu Lee ◽  
L. R. Kinkead ◽  
S. Sarwinski

This study examines, using an in vitro tissue bath technique, the nature of the transmitter mechanism(s) in the pig cerebral artery. Of the arteries with intact endothelium, about 25% relaxed on application of acetylcholine (ACh) at low concentration (3 × 10−7 to 3 × 10−6 M) and constricted at concentrations exceeding 10−5 M. The remaining arterial preparations either constricted (61%) or exhibited no response (14%) at any concentration of ACh tested (3 × 10−7 to 3 × 10−3 M). On the other hand, none of the arteries without endothelium relaxed at any concentration of ACh tested (3 × 10−7 to 3 × 10−3 M); of these, 90% constricted and 10% exhibited no response. These results show that ACh-induced cerebral vasodilation is dependent on endothelial cells and the direct action of ACh on the vascular smooth muscle cells is constriction. Contrary to findings in the large cerebral arteries of the cat and several other species, about 90% of the pig cerebral arteries, with or without endothelium, dilated upon application of norepinephrine (NE) at low concentration (10−7 to 3 × 10−5 M) and constricted at concentrations exceeding 3 × 10−5 M. The NE dose–response relationships were not different in arteries with and without endothelial cells, indicating that the NE-induced vasodilation was independent of the endothelial cells. The relaxation and constriction were blocked by the respective β- and α-receptor antagonists, suggesting that both responses resulted from direct stimulation by NE of β and α receptors on the smooth muscle cells. Transmural nerve stimulation (TNS) consistently induced vasodilation of the arteries whether or not the endothelial cells were present. The vasodilation was abolished by tetrodotoxin (TTX) and cold storage denervation. The TNS-induced vasodilation was not smaller in arteries without endothelium than in those with endothelium. This suggests that TNS-induced vasodilation was independent of the endothelial cells. When examined histochemically, the pig cerebral artery exhibited rich catecholamine fluorescence. Biochemical assays indicate that NE is the primary catecholamine. However, the TNS-induced vasodilation was not affected by atropine, guanethidine, or propranolol, nor prevented by reserpine. It is suggested that an as yet unidentified transmitter is responsible for the TNS-induced vasodilation. Results of this study suggest that the nerve-released ACh is a potential vasoconstrictor transmitter and that NE is a potential vasodilator transmitter in the large cerebral artery of the pig. The neurogenic control of the pig cerebral circulation may be different from that of other species, including humans.

1987 ◽  
Vol 67 (4) ◽  
pp. 565-572 ◽  
Author(s):  
Tadayoshi Nakagomi ◽  
Neal F. Kassell ◽  
Tomio Sasaki ◽  
Shigeru Fujiwara ◽  
R. Michael Lehman ◽  
...  

✓ The purpose of this experiment was to evaluate the effect of hypoxia on the in vitro contractile responses of canine basilar artery to KCl, prostaglandin (PG) F2α, and hemoglobin. Hypoxia was induced by changing the bubbling gas mixture in the chamber from 95% O2/5% CO2 to 95% N2/5% CO2. Hypoxia augmented the contractile response developed at 95% O2 to 25 mM and 50 mM KCl, 3 × 10−7 M and 10−5 M PGF2α, and 10−6 M hemoglobin. No significant alteration of the hypoxic augmentation in any preparation exposed to 25 mM KCl, 3 × 10−7 M PGF2α, or 10−6 M hemoglobin was observed with guanethidine (10−5 M), prazosin (10−5 M), methysergide (10−5 M), or diphenhydramine (10−5 M). Endothelial denudation did not affect hypoxic augmentation. Hypoxia did not cause any alteration of the contractile response to 10−6 M PGF2α in Ca++-free media. Pretreatment with a calcium channel blocker, nicardipine, significantly inhibited the hypoxic potentiation of the contractile response to 25 mM KCl, 3 × 10−7 M PGF2α, and 10−6 M hemoglobin. These results suggest that hypoxia augments the contractile response to these agonists by a direct action on the smooth-muscle cells, facilitating the transmembrane influx of extracellular calcium. Hypoxia of smooth-muscle cells in the major cerebral arteries might be involved in the pathogenesis of vasospasm.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Mieko Oka ◽  
Nobuhiko Ohno ◽  
Takakazu Kawamata ◽  
Tomohiro Aoki

Introduction: Intracranial aneurysm (IA) affects 1 to 5 % in general public and becomes the primary cause of subarachnoid hemorrhage, the most severe form of stroke. However, currently, no drug therapy is available for IAs to prevent progression and rupture of lesions. Elucidation of mechanisms underlying the disease is thus mandatory. Considering the important role of vascular smooth muscle cells (SMCs) in the maintenance of stiffness of arterial walls and also in the pathogenesis of atherosclerosis via mediating inflammatory responses, we in the present study analyzed morphological or phenotypical changes of SMCs during the disease development in the lesions. Methods: We subjected rats to an IA model in which lesions are induced by increase of hemodynamic force loading on intracranial arterial bifurcations and performed histopathological analyses of induced lesions including the electron microscopic examination. We then immunostained specimens from induced lesions to explore factors responsible for dedifferentiation or migration of SMCs. In vitro study was also done to examine effect of some candidate factors on dedifferentiation or migration of cultured SMCs. Results: We first found the accumulation of SMCs underneath the endothelial cell layer mainly at the neck portion of the lesion. These cells was positive for the embryonic form of myosin heavy chain, a marker for the dedifferentiated SMCs, and the expression of pro-inflammatory factors like TNF-α. In immunostaining to explore the potential factor regulating the dedifferentiation of SMCs, we found that Platelet-derived growth factor-BB (PDGF-BB) was expressed in endothelial cells at the neck portion of IA walls. Consistently, recombinant PDGF-BB could promote the dedifferentiate of SMCs and chemo-attracted them in in vitro. Finally, in the stenosis model of the carotid artery, PDGF-BB expression was induced in endothelial cells in which high wall shear stress was loaded and the dedifferentiation of SMCs occurred there. Conclusions: The findings from the present study imply the role of dedifferentiated SMCs partially recruited by PDGF-BB from endothelial cells in the formation of inflammatory microenvironment at the neck portion of IA walls, leading to the progression of the disease.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 373-378 ◽  
Author(s):  
AI Schafer ◽  
H Takayama ◽  
S Farrell ◽  
MA Jr Gimbrone

Abstract When arachidonic acid metabolism is studied during platelet-endothelial interactions in vitro, the predominant cyclooxygenase end products of each cell type (thromboxane B2 and 6-keto-prostaglandin-F1 alpha, respectively) are essentially completely recovered in the cell-free supernatants of these reactions. In contrast, 50% of 12-hydroxy- 5,8,10,14-eicosatetraenoic acid (12-HETE), the major lipoxygenase metabolite from platelets, is released into the cell-free supernatant. In investigating the basis of this observation, we have found that platelet lipoxygenase metabolites were generated to the same extent during these coincubations but became rapidly incorporated into the endothelial cells. The endothelial cell-associated 12-HETE was present not only as free fatty acid, but was also incorporated into cellular phospholipids and triglycerides. When purified 3H-12-HETE, 3H-5-HETE (the major hydroxy acid lipoxygenase product of leukocytes), and 3H- arachidonic acid (the common precursor of these metabolites) were individually incubated with suspensions of cultured bovine aortic endothelial cells or smooth muscle cells, different patterns of intracellular lipid distribution were found. In endothelial cells, 12- HETE was incorporated equally into phospholipids and triglycerides, whereas 5-HETE was incorporated preferentially into triglycerides, and arachidonic acid was incorporated into phospholipids. In smooth muscle cells, both 12-HETE and 5-HETE showed more extensive incorporation into triglycerides. The rapid and characteristic incorporation and esterification of platelet and leukocyte monohydroxy fatty acid lipoxygenase products by endothelial and smooth muscle cells suggests a possible physiologic role for these processes in regulating vascular function.


2000 ◽  
Vol 152 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Jörg Kotzerke ◽  
Ralf Gertler ◽  
Inga Buchmann ◽  
Regine Baur ◽  
Vinzenz Hombach ◽  
...  

Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4290-4298 ◽  
Author(s):  
Abd Al-Roof Higazi ◽  
Ehud Lavi ◽  
Khalil Bdeir ◽  
Anthony M. Ulrich ◽  
Dara G. Jamieson ◽  
...  

AbstractThere is evidence to suggest that elevated plasma levels of lipoprotein (a) [Lp(a)] represent a risk factor for the development of atherosclerotic vascular disease, but the mechanism by which this lipoprotein localizes to involved vessels is only partially understood. In view of studies suggesting a link between inflammation and atherosclerosis and our previous finding that leukocyte defensin modulates the interaction of plasminogen and tissue-type plasminogen activator with cultured human endothelial cells, we examined the effect of this peptide on the binding of Lp(a) to cultured vascular endothelium and vascular smooth muscle cells. Defensin increased the binding of Lp(a) to endothelial cells approximately fourfold and to smooth muscle cells approximately sixfold. Defensin caused a comparable increase in the amount of Lp(a) internalized by each cell type, but Lp(a) internalized as a consequence of defensin being present was not degraded, resulting in a marked increase in the total amount of cell-associated lipoprotein. Abundant defensin was found in endothelium and in intimal smooth muscle cells of atherosclerotic human cerebral arteries, regions also invested with Lp(a). These studies suggest that defensin released from activated or senescent neutrophils may contribute to the localization and persistence of Lp(a) in human vessels and thereby predispose to the development of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document