scholarly journals Pulmonary and Hepatic Gene Expression following Cecal Ligation and Puncture: Monophosphoryl Lipid A Prophylaxis Attenuates Sepsis-Induced Cytokine and Chemokine Expression and Neutrophil Infiltration

1998 ◽  
Vol 66 (8) ◽  
pp. 3569-3578 ◽  
Author(s):  
Cindy A. Salkowski ◽  
Gregory Detore ◽  
Alice Franks ◽  
Michael C. Falk ◽  
Stefanie N. Vogel

ABSTRACT Polymicrobial sepsis induced by cecal ligation and puncture (CLP) reproduces many of the pathophysiologic features of septic shock. In this study, we demonstrate that mRNA for a broad range of pro- and anti-inflammatory cytokine and chemokine genes are temporally regulated after CLP in the lung and liver. We also assessed whether prophylactic administration of monophosphoryl lipid A (MPL), a nontoxic derivative of lipopolysaccharide (LPS) that induces endotoxin tolerance and attenuates the sepsis syndrome in mice after CLP, would alter tissue-specific gene expression post-CLP. Levels of pulmonary interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (G-CSF), IL-1 receptor antagonist (IL-1ra), and IL-10 mRNA, as well as hepatic IL-1β, IL-6, gamma interferon (IFN-γ), G-CSF, inducible nitric oxide synthase, and IL-10 mRNA, were reduced in MPL-pretreated mice after CLP compared to control mice. Chemokine mRNA expression was also profoundly mitigated in MPL-pretreated mice after CLP. Specifically, levels of pulmonary and hepatic macrophage inflammatory protein 1α (MIP-1α), MIP-1β, MIP-2, and monocyte chemoattractant protein-1 (MCP-1) mRNA, as well as hepatic IFN-γ-inducible protein 10 and KC mRNA, were attenuated in MPL-pretreated mice after CLP. Attenuated levels of IL-6, TNF-α, MCP-1, MIP-1α, and MIP-2 in serum also were observed in MPL-pretreated mice after CLP. Diminished pulmonary chemokine mRNA production was associated with reduced neutrophil margination and pulmonary myeloperoxidase activity. These data suggest that prophylactic administration of MPL mitigates the sepsis syndrome by reducing chemokine production and the recruitment of inflammatory cells into tissues, thereby attenuating the production of proinflammatory cytokines.

2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Katharina Richard ◽  
Barbara J. Mann ◽  
Aiping Qin ◽  
Eileen M. Barry ◽  
Robert K. Ernst ◽  
...  

ABSTRACT Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) challenge in mice. However, we achieved only partial protection against F. tularensis Schu S4 intranasal (i.n.) challenge, even when employing heterologous prime-boost immunization strategies. We now extend these findings to show that both LVS-V and Schu S4-V immunization (i.p./i.p.) elicited similarly high titers of anti-F. tularensis IgG and that the titers could be further increased by adding monophosphoryl lipid A (MPL), a nontoxic Toll-like receptor 4 (TLR4) adjuvant that is included in several U.S. FDA-approved vaccines. LVS-V+MPL immune sera also detected more F. tularensis antigens than LVS-V immune sera and, after passive transfer to naive mice, significantly delayed the time to death against F. tularensis Schu S4 subcutaneous (s.c.) but not i.n. challenge. Active immunization with LVS-V+MPL (i.p./i.p.) also increased the frequency of gamma interferon (IFN-γ)-secreting activated helper T cells, IFN-γ production, and the ability of splenocytes to control intramacrophage F. tularensis LVS replication ex vivo. Active LVS-V+MPL immunization via heterologous routes (i.p./i.n.) significantly elevated IgA and IgG levels in bronchoalveolar lavage fluid and significantly enhanced protection against i.n. F. tularensis Schu S4 challenge (to ∼60%). These data represent a significant step in the development of a subunit vaccine against the highly virulent type A strains.


2005 ◽  
Vol 73 (1) ◽  
pp. 250-257 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Yolanta Fishman ◽  
Herve Bercovier

ABSTRACT In this study, we examined the immunogenicity and protective efficacy of six immunodominant Mycobacterium tuberculosis recombinant antigens (85B, 38kDa, ESAT-6, CFP21, Mtb8.4, and 16kDa) in a multivalent vaccine preparation (6Ag). Gamma interferon (IFN-γ) and monophosphoryl lipid A-trehalose dicorynomycolate (Ribi) adjuvant systems were used separately or in combination for immunization with the recombinant antigens. Our results demonstrate that immunization of mice with Ribi emulsified antigens in the presence of IFN-γ (Ribi+6Ag+IFN-γ) resulted after challenge with a virulent M. tuberculosis strain in a significant reduction in the CFU counts that was comparable to that achieved with the BCG vaccine (∼0.9-log protection). Antigen-specific immunoglobulin G (IgG) titers in the Ribi+6Ag+IFN-γ-immunized mice were lower than in mice immunized with Ribi+6Ag and were oriented toward a Th1-type response, as confirmed by elevated IgG2a levels. In addition, splenocyte proliferation, IFN-γ secretion, and NO production were significantly higher in splenocytes derived from Ribi+6Ag+IFN-γ-immunized mice, whereas IL-10 secretion was decreased. These findings confirm the induction of a strong cellular immunity in the vaccinated mice that correlates well with their enhanced resistance to M. tuberculosis. The adjuvant effect of IFN-γ was dose dependent. A dose of 5 μg of IFN-γ per mouse per immunization gave optimal protection, whereas lower or higher amounts (0.5 or 50 μg/ mouse) of IFN-γ failed to enhance protection.


2018 ◽  
Vol 315 (3) ◽  
pp. F711-F725 ◽  
Author(s):  
Bruns A. Watts ◽  
Thampi George ◽  
Edward R. Sherwood ◽  
David W. Good

Metabolic acidosis is the most common acid-base disorder in septic patients and is associated with increased mortality. Previously, we demonstrated that sepsis induced by cecal ligation and puncture (CLP) impairs [Formula: see text] absorption in the medullary thick ascending limb (MTAL) by 1) decreasing the intrinsic [Formula: see text] absorptive capacity and 2) enhancing inhibition of [Formula: see text] absorption by LPS through upregulation of Toll-like receptor (TLR) 4 signaling. Both effects depend on ERK activation. Monophosphoryl lipid A (MPLA) is a detoxified TLR4 agonist that enhances innate antimicrobial immunity and improves survival following sepsis. Pretreatment of MTALs with MPLA in vitro prevents LPS inhibition of [Formula: see text] absorption. Here we examined whether pretreatment with MPLA would protect the MTAL against sepsis. Vehicle or MPLA was administered to mice 48 h before sham or CLP surgery, and MTALs were studied in vitro 18 h postsurgery. Pretreatment with MPLA prevented the effects of sepsis to decrease the basal [Formula: see text] absorption rate and enhance inhibition by LPS. These protective effects were mediated through MPLA stimulation of a Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β-(TRIF)-dependent phosphatidylinositol 3-kinase-Akt pathway that prevents sepsis- and LPS-induced ERK activation. The effects of MPLA to improve MTAL [Formula: see text] absorption were associated with marked improvement in plasma [Formula: see text] concentration, supporting a role for the kidneys in the pathogenesis of sepsis-induced metabolic acidosis. These studies support detoxified TLR4-based immunomodulators, such as MPLA, that enhance antimicrobial responses as a safe and effective approach to prevent or treat sepsis-induced renal tubule dysfunction and identify cell signaling pathways that can be targeted to preserve MTAL [Formula: see text] absorption and attenuate metabolic acidosis during sepsis.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 633
Author(s):  
Woo Sik Kim ◽  
Yong Zhi ◽  
Huichen Guo ◽  
Eui-Baek Byun ◽  
Jae Hyang Lim ◽  
...  

Virus-like particles (VLPs) have emerged as promising vaccine candidates against foot-and-mouth disease (FMD). However, such vaccines provide a relatively low level of protection against FMD virus (FMDV) because of their poor immunogenicity. Therefore, it is necessary to design effective vaccine strategies that induce more potent immunogenicity. In order to investigate the means to improve FMD VLP vaccine (VLPFMDV) immunogenicity, we encapsulated VLPs (MPL/DDA-VLPFMDV) with cationic liposomes based on dimethyldioctadecylammonium bromide (DDA) and/or monophosphoryl lipid A (MPL, TLR4 agonist) as adjuvants. Unlike inactivated whole-cell vaccines, VLPFMDV were successfully encapsulated in this MPL/DDA system. We found that MPL/DDA-VLPFMDV could induce strong cell-mediated immune responses by inducing not only VLP-specific IFN-γ+CD4+ (Th1), IL-17A+CD4+ (Th17), and IFN-γ+CD8+ (activated CD8 response) T cells, but also the development of VLP-specific multifunctional CD4+ and CD8+ memory T cells co-expressing IFN-γ, TNF-α, and IL-2. In addition, the MPL/DDA-VLPFMDV vaccine markedly induced VLP-specific antibody titers; in particular, the vaccine induced greater Th1-predominant IgG responses than VLPFMDV only and DDA-VLPFMDV. These results are expected to provide important clues for the development of an effective VLPFMDV that can induce cellular and humoral immune responses, and address the limitations seen in current VLP vaccines for various diseases.


2011 ◽  
Vol 18 (10) ◽  
pp. 1702-1709 ◽  
Author(s):  
Tansi Khodai ◽  
Debbie Chappell ◽  
Clare Christy ◽  
Paul Cockle ◽  
Jim Eyles ◽  
...  

ABSTRACTDespite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines.


2018 ◽  
Vol 24 (4) ◽  
pp. 240-251 ◽  
Author(s):  
Naveen Surendran ◽  
Andrea Simmons ◽  
Michael E Pichichero

Each year millions of neonates die due to vaccine preventable infectious diseases. Our study seeks to develop novel neonatal vaccines and improve immunogenicity of early childhood vaccines by incorporating TLR agonist-adjuvant combinations that overcome the inherent neonatal Th2 bias and stimulate Th1 polarizing response from neonatal APCs. We systematically stimulated cord blood mononuclear cells with single and multiple combinations of TLR agonists and measured levels of IL-12p70, IFN-γ, IFN-α, IL-10, IL-13, TNF-α, IL-6 and IL-1β from cell culture supernatants. APC-specific surface expression levels of costimulatory markers CD40, CD83 and PD-L1 were assessed by flow cytometry. Whole blood assays were included to account for the effect of plasma inhibitory factors and APC intracellular TNF-α and IL-12p40 secretions were measured. We found robust Th1 polarizing IL-12p70, IFN-γ and IFN-α responses when cord blood APCs were stimulated with TLR agonist combinations that contained Poly I:C, Monophosphoryl Lipid A (MPLA) or R848. Addition of class A CpG oligonucleotide (ODN) to Th1 polarizing TLR agonist combinations significantly reduced cord blood IL-12p70 and IFN-γ levels and addition of a TLR2 agonist induced significantly high Th2 polarizing IL-13. Multi-TLR agonist combinations that included R848 induced lower inhibitory PD-L1 expression on cord blood classical dendritic cells than CpG ODN-containing combinations. Incorporation of combination adjuvants containing TLR3, TLR4 and TLR7/8 agonists to neonatal vaccines may be an effective strategy to overcome neonatal Th2 bias.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0144345 ◽  
Author(s):  
Perenlei Enkhbaatar ◽  
Christina Nelson ◽  
John R. Salsbury ◽  
Joseph R. Carmical ◽  
Karen E. O. Torres ◽  
...  

1996 ◽  
Vol 173 (1) ◽  
pp. 64-78 ◽  
Author(s):  
Innocent N. Mbawuike ◽  
Catherine Acuna ◽  
Diana Caballero ◽  
Khiem Pham-Nguyen ◽  
Brian Gilbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document