scholarly journals Antibody-Based Protection of Gnotobiotic Piglets Infected with Escherichia coli O157:H7 against Systemic Complications Associated with Shiga Toxin 2

1999 ◽  
Vol 67 (7) ◽  
pp. 3645-3648 ◽  
Author(s):  
Art Donohue-Rolfe ◽  
Ivanela Kondova ◽  
Jean Mukherjee ◽  
Kerry Chios ◽  
David Hutto ◽  
...  

ABSTRACT Hemolytic-uremic syndrome (HUS) is a serious disease in children, attributable in the majority of cases to infection with Shiga toxin (Stx)-producing Escherichia coli. Using gnotobiotic piglets orally infected with E. coli O157:H7, which develop Stx-related cerebellar lesions and fatal neurological symptoms, we show that administration of Stx2-specific antiserum well after challenge protected, in a dose-response fashion, against these symptoms for at least 24 h after bacterial challenge. Twenty-six of 30 piglets given Stx2 antiserum survived the challenge, compared to only 4 of 16 animals given control serum or saline. Given our observations in piglets, Stx antibody of human origin may likewise prevent HUS in children.

2008 ◽  
Vol 77 (2) ◽  
pp. 783-790 ◽  
Author(s):  
Thibaut de Sablet ◽  
Christophe Chassard ◽  
Annick Bernalier-Donadille ◽  
Marjolaine Vareille ◽  
Alain P. Gobert ◽  
...  

ABSTRACT Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx 2 mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx 2 repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.


2004 ◽  
Vol 186 (16) ◽  
pp. 5506-5512 ◽  
Author(s):  
Shantini D. Gamage ◽  
Colleen M. McGannon ◽  
Alison A. Weiss

ABSTRACT The AB5 toxin Shiga toxin 2 (Stx2) has been implicated as a major virulence factor of Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains in the progression of intestinal disease to more severe systemic complications. Here, we demonstrate that supernatant from a normal E. coli isolate, FI-29, neutralizes the effect of Stx2, but not the related Stx1, on Vero cells. Biochemical characterization of the neutralizing activity identified the lipopolysaccharide (LPS) of FI-29, a serogroup O107/O117 strain, as the toxin-neutralizing component. LPSs from FI-29 as well as from type strains E. coli O107 and E. coli O117 were able bind Stx2 but not Stx1, indicating that the mechanism of toxin neutralization may involve inhibition of the interaction between Stx2 and the Gb3 receptor on Vero cells.


2016 ◽  
Vol 14 (1) ◽  
pp. 63-68 ◽  
Author(s):  
MM Akter ◽  
S Majumder ◽  
KH MNH Nazir ◽  
M Rahman

Shiga toxin-producing Escherichia coli (STEC) are zoonotically important pathogen which causes hemorrhagic colitis, diarrhea, and hemolytic uremic syndrome in animals and humans. The present study was designed to isolate and identify the STEC from fecal samples of diarrheic cattle. A total of 35 diarrheic fecal samples were collected from Bangladesh Agricultural University (BAU) Veterinary Teaching Hospital. The samples were primarily examined for the detection of E. coli by cultural, morphological and biochemical characteristics, followed by confirmation of the isolates by Polymerase Chain Reaction (PCR) using gene specific primers. Later, the STEC were identified among the isolated E. coli through detection of Stx-1 and Stx-2 genes using duplex PCR. Out of 35 samples, 25 (71.43%) isolates were confirmed to be associated with E. coli, of which only 7 (28%) isolates were shiga toxin producers, and all of them were positive for Stx-1. However, no Stx-2 positive isolate could be detected. From this study, it may be concluded that cattle can act as a reservoir of STEC which may transmit to human or other animals.J. Bangladesh Agril. Univ. 14(1): 63-68, June 2016


2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


2010 ◽  
Vol 73 (4) ◽  
pp. 649-656 ◽  
Author(s):  
M. O. MASANA ◽  
G. A. LEOTTA ◽  
L. L. DEL CASTILLO ◽  
B. A. D'ASTEK ◽  
P. M. PALLADINO ◽  
...  

In Argentina, Escherichia coli O157:H7/NM (STEC O157) is the prevalent serotype associated with hemolytic uremic syndrome (HUS), which is endemic in the country with more than 400 cases per year. In order to estimate the prevalence and characteristics of STEC O157 in beef cattle at slaughter, a survey of 1,622 fecal and carcass samples was conducted in nine beef exporting abattoirs from November 2006 to April 2008. A total of 54 samples were found positive for STEC O157, with an average prevalence of 4.1% in fecal content and 2.6% in carcasses. Calves and heifers presented higher percentages of prevalence in feces, 10.5 and 8.5%, respectively. All STEC O157 isolates harbored stx2 (Shiga toxin 2), eae (intimin), ehxA (enterohemolysin), and fliCH7 (H7 flagellin) genes, while stx1 (Shiga toxin 1) was present in 16.7% of the strains. The prevalent (56%) stx genotype identified was stx2 combined with variant stx2c (vh-a), the combination of which is also prevalent (>90%) in STEC O157 post–enteric HUS cases in Argentina. The clonal relatedness of STEC O157 strains was established by phage typing and pulsed-field gel electrophoresis (PFGE). The 54 STEC isolates were categorized into 12 different phage types and in 29 XbaI-PFGE patterns distributed in 27 different lots. STEC O157 strains isolated from 5 of 21 carcasses were identical by PFGE (100% similarity) to strains of the fecal content of the same or a contiguous bovine in the lot. Five phage type–PFGE–stx profiles of 10 strains isolated in this study matched with the profiles of the strains recovered from 18 of 122 HUS cases that occurred in the same period.


2000 ◽  
Vol 63 (6) ◽  
pp. 819-821 ◽  
Author(s):  
DAVID W. K. ACHESON

Escherichia coli O157:H7 is but one of a group of Shiga toxin-producing E. coli (STEC) that cause both intestinal disease such as bloody and nonbloody diarrhea and serious complications like hemolytic uremic syndrome (HUS). While E. coli O157: H7 is the most renowned STEC, over 200 different types of STEC have been documented in meat and animals, at least 60 of which have been linked with human disease. A number of studies have suggested that non-O157 STEC are associated with clinical disease, and non-O157 STEC are present in the food supply. Non-O157 STEC, such as O111 have caused large outbreaks and HUS in the United States and other countries. The current policy in the United States is to examine ground beef for O157:H7 only, but restricting the focus to O157 will miss other important human STEC pathogens.


2002 ◽  
Vol 68 (5) ◽  
pp. 2316-2325 ◽  
Author(s):  
Nathalie Pradel ◽  
Sabine Leroy-Setrin ◽  
Bernard Joly ◽  
Valérie Livrelli

ABSTRACT To identify Shiga toxin-producing Escherichia coli genes associated with severe human disease, a genomic subtraction technique was used with hemolytic-uremic syndrome-associated O91:H21 strain CH014 and O6:H10 bovine strains. The method was adapted to the Shiga toxin-producing E. coli genome: three rounds of subtraction were used to isolate DNA fragments specific to strain CH014. The fragments were characterized by genetic support analysis, sequencing, and hybridization to the genome of a collection of Shiga toxin-producing E. coli strains. A total of 42 fragments were found, 19 of which correspond to previously identified unique DNA sequences in the enterohemorrhagic E. coli EDL933 reference strain, including 7 fragments corresponding to prophage sequences and others encoding candidate virulence factors, such a SepA homolog protein and a fimbrial usher protein. In addition, the subtraction procedure yielded plasmid-related sequences from Shigella flexneri and enteropathogenic and Shiga toxin-producing E. coli virulence plasmids. We found that lateral gene transfer is extensive in strain CH014, and we discuss the role of genomic mobile elements, especially bacteriophages, in the evolution and possible transfer of virulence determinants.


2009 ◽  
Vol 77 (8) ◽  
pp. 3234-3243 ◽  
Author(s):  
Sylvia Herold ◽  
James C. Paton ◽  
Adrienne W. Paton

ABSTRACT Shiga-toxigenic Escherichia coli (STEC) strains cause serious gastrointestinal disease, which can lead to potentially life-threatening systemic complications such as hemolytic-uremic syndrome. Although the production of Shiga toxin has been considered to be the main virulence trait of STEC for many years, the capacity to colonize the host intestinal epithelium is a crucial step in pathogenesis. In this study, we have characterized a novel megaplasmid-encoded outer membrane protein in locus of enterocyte effacement (LEE)-negative O113:H21 STEC strain 98NK2, termed Sab (for STEC autotransporter [AT] contributing to biofilm formation). The 4,296-bp sab gene encodes a 1,431-amino-acid protein with the features of members of the AT protein family. When expressed in E. coli JM109, Sab contributed to the diffuse adherence to human epithelial (HEp-2) cells and promoted biofilm formation on polystyrene surfaces. A 98NK2 sab deletion mutant was also defective in biofilm formation relative to its otherwise isogenic wild-type parent, and this was complemented by transformation with a sab-carrying plasmid. Interestingly, an unrelated O113:H21 STEC isolate that had a naturally occurring deletion in sab was similarly defective in biofilm formation. PCR analysis indicated that sab is present in LEE-negative STEC strains belonging to serotypes/groups O113:H21, O23, and O82:H8. These findings raise the possibility that Sab may contribute to colonization in a subset of LEE-negative STEC strains.


2012 ◽  
Vol 56 (6) ◽  
pp. 3277-3282 ◽  
Author(s):  
Martina Bielaszewska ◽  
Evgeny A. Idelevich ◽  
Wenlan Zhang ◽  
Andreas Bauwens ◽  
Frieder Schaumburg ◽  
...  

ABSTRACTThe role of antibiotics in treatment of enterohemorrhagicEscherichia coli(EHEC) infections is controversial because of concerns about triggering hemolytic-uremic syndrome (HUS) by increasing Shiga toxin (Stx) production. During the recent large EHEC O104:H4 outbreak, antibiotic therapy was indicated for some patients. We tested a diverse panel of antibiotics to which the outbreak strain is susceptible to interrogate the effects of subinhibitory antibiotic concentrations on induction ofstx2-harboring bacteriophages,stx2transcription, and Stx2 production in this emerging pathogen. Ciprofloxacin significantly increasedstx2-harboring phage induction and Stx2 production in outbreak isolates (Pvalues of <0.001 to <0.05), while fosfomycin, gentamicin, and kanamycin insignificantly influenced them (P> 0.1) and chloramphenicol, meropenem, azithromycin, rifaximin, and tigecycline significantly decreased them (P≤ 0.05). Ciprofloxacin and chloramphenicol significantly upregulated and downregulatedstx2transcription, respectively (P< 0.01); the other antibiotics had insignificant effects (P> 0.1). Meropenem, azithromycin, and rifaximin, which were used for necessary therapeutic or prophylactic interventions during the EHEC O104:H4 outbreak, as well as tigecycline, neither inducedstx2-harboring phages nor increasedstx2transcription or Stx2 production in the outbreak strain. These antibiotics might represent therapeutic options for patients with EHEC O104:H4 infection if antibiotic treatment is inevitable. We await further analysis of the epidemic to determine if usage of these agents was associated with an altered risk of developing HUS.


2007 ◽  
Vol 74 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Alexander Mellmann ◽  
Shan Lu ◽  
Helge Karch ◽  
Jian-guo Xu ◽  
Dag Harmsen ◽  
...  

ABSTRACT Using colony blot hybridization with stx 2 and eae probes and agglutination in anti-O157 lipopolysaccharide serum, we isolated stx 2-positive and eae-positive sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:NM (nonmotile) strains from initial stool specimens and stx-negative and eae-positive SF E. coli O157:NM strains from follow-up specimens (collected 3 to 8 days later) from three children. The stx-negative isolates from each patient shared with the corresponding stx 2-positive isolates fliC H7, non-stx virulence traits, and multilocus sequence types, which indicates that they arose from the stx 2-positive strains by loss of stx 2 during infection. Analysis of the integrity of the yecE gene, a possible stx phage integration site in EHEC O157, in the consecutive stx 2-positive and stx-negative isolates demonstrated that yecE was occupied in stx 2-positive but intact in stx-negative strains. It was possible to infect and lysogenize the stx-negative E. coli O157 strains in vitro using an stx 2-harboring bacteriophage from one of the SF EHEC O157:NM isolates. The acquisition of the stx 2-containing phage resulted in the occupation of yecE and production of biologically active Shiga toxin 2. We conclude that the yecE gene in SF E. coli O157:NM is a hot spot for excision and integration of Shiga toxin 2-encoding bacteriophages. SF EHEC O157:NM strains and their stx-negative derivatives thus represent a highly dynamic system that can convert in both directions by the loss and gain of stx 2-harboring phages. The ability to recycle stx 2, a critical virulence trait, makes SF E. coli O157:NM strains ephemeral EHEC that can exist as stx-negative variants during certain phases of their life cycle.


Sign in / Sign up

Export Citation Format

Share Document