positive isolate
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Vol 12 ◽  
Author(s):  
Ryuichi Nakano ◽  
Yuki Yamada ◽  
Akiyo Nakano ◽  
Yuki Suzuki ◽  
Kai Saito ◽  
...  

Various carbapenemases have been identified in the Enterobacteriaceae. However, the induction and corresponding regulator genes of carbapenemase NmcA has rarely been detected in the Enterobacter cloacae complex (ECC). The NmcA-positive isolate ECC NR1491 was first detected in Japan in 2013. It was characterized and its induction system elucidated by evaluating its associated regulator genes nmcR, ampD, and ampR. The isolate was highly resistant to all β-lactams except for third generation cephalosporins (3GC). Whole-genome analysis revealed that blaNmcA was located on a novel 29-kb putatively mobile element called EludIMEX-1 inserted into the chromosome. The inducibility of β-lactamase activity by various agents was evaluated. Cefoxitin was confirmed as a strong concentration-independent β-lactamase inducer. In contrast, carbapenems induced β-lactamase in a concentration-dependent manner. All selected 3GC-mutants harboring substitutions on ampD (as ampR and nmcR were unchanged) were highly resistant to 3GC. The ampD mutant strain NR3901 presented with a 700 × increase in β-lactamase activity with or without induction. Similar upregulation was also observed for ampC and nmcA. NR1491 (pKU412) was obtained by transforming the ampR mutant (135Asn) clone plasmid whose expression increased by ∼100×. Like NR3901, it was highly resistant to 3GC. Overexpression of ampC, rather than nmcA, may have accounted for the higher MIC in NR1491. The ampR mutant repressed nmcA despite induction and it remains unclear how it stimulates nmcA transcription via induction. Future experiments should analyze the roles of nmcR mutant strains.


2021 ◽  
Vol 10 (40) ◽  
Author(s):  
Ewa Wardal ◽  
Ewa Sadowy

Enterococcus faecalis is an important human pathogen involved in health care-associated infections, and its increasing resistance to vancomycin is worrisome. Here, we report the complete genome sequence of a Polish hospital vanA- positive isolate of E. faecalis , consisting of a 3,264,821-bp chromosome and six plasmids.


2021 ◽  
Vol 66 (No. 10) ◽  
pp. 431-439
Author(s):  
TN Thi ◽  
H Vu-Khac ◽  
TN Duc

The objective of this study was isolating and characterising Clostridium perfringens from chickens in Vietnam and identifying virulence factors involved with enteritis. Five hundred thirty-one faecal and sixty-eight intestinal samples were collected from healthy and diseased chickens for the C. perfringens isolation. The presence of virulence factors was determined by multiplex PCR. The netB gene of the selected isolates was sequenced and checked for its expression by SDS-PAGE. Two hundred seventy-two C. perfringens isolates were collected. All of them were shown to be positive for the cpa gene. The netB gene was detected in 26.56% of the C. perfringens isolates from the healthy chickens, while 43.45% of the isolates from the faeces and 45% of the isolates from the intestinal samples were positive for this gene in the diseased birds. All eight isolates positive to netB from the diseased chickens showed 100% identity in the netB sequence and produced the NetB toxin in vitro, whereas only two out of eight healthy chicken-derived isolates produced this toxin. Nine out of ten chickens experimentally infected with the C. perfringens netB-positive isolate showed typical signs of enteritis. The cpa gene was the most prevalent virulence factor identified in the bacteria C. perfringens, but the netB gene could be a major player responsible for necrotic enteritis progression in chickens.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1013
Author(s):  
Isabel Carvalho ◽  
Rita Cunha ◽  
Carla Martins ◽  
Sandra Martínez-Álvarez ◽  
Nadia Safia Chenouf ◽  
...  

The purpose of this study was to analyse the prevalence and genetic characteristics of ESBL and acquired-AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick dogs in Portugal. Three hundred and sixty-one faecal samples from sick and healthy dogs were seeded on MacConkey agar supplemented with cefotaxime (2 µg/mL) for cefotaxime-resistant (CTXR) E. coli recovery. Antimicrobial susceptibility testing for 15 antibiotics was performed and the ESBL-phenotype of the E. coli isolates was screened. Detection of antimicrobial resistance and virulence genes, and molecular typing of the isolates (phylogroups, multilocus-sequence-typing, and specific-ST131) were performed by PCR (and sequencing when required). CTXRE. coli isolates were obtained in 51/361 faecal samples analysed (14.1%), originating from 36/234 sick dogs and 15/127 healthy dogs. Forty-seven ESBL-producing E. coli isolates were recovered from 32 sick (13.7%) and 15 healthy animals (11.8%). Different variants of blaCTX-M genes were detected among 45/47 ESBL-producers: blaCTX-M-15 (n = 26), blaCTX-M-1 (n = 10), blaCTX-M-32 (n = 3), blaCTX-M-55 (n = 3), blaCTX-M-14 (n = 2), and blaCTX-M-variant (n = 1); one ESBL-positive isolate co-produced CTX-M-15 and CMY-2 enzymes. Moreover, two additional CTXR ESBL-negative E. coli isolates were CMY-2-producers (qAmpC). Ten different sequence types were identified (ST/phylogenetic-group/β-lactamase): ST131/B2/CTX-M-15, ST617/A/CTX-M-55, ST3078/B1/CTX-M-32, ST542/A/CTX-M-14, ST57/D/CTX-M-1, ST12/B2/CTX-M-15, ST6448/B1/CTX-M-15 + CMY-2, ST5766/A/CTX-M-32, ST115/D/CMY-2 and a new-ST/D/CMY-2. Five variants of CTX-M enzymes (CTX-M-15 and CTX-M-1 predominant) and eight different clonal complexes were detected from canine ESBL-producing E. coli isolates. Although at a lower rate, CMY-2 β-lactamase was also found. Dogs remain frequent carriers of ESBL and/or qAmpC-producing E. coli with a potential zoonotic role.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ahmad Nadzri Nur-Farahiyah ◽  
Kiven Kumar ◽  
Abd Rahaman Yasmin ◽  
Abdul Rahman Omar ◽  
Siti Nazrina Camalxaman

Naïve Felidae in the wild may harbor infectious viruses of importance due to cross-species transmission between the domesticated animals or human–wildlife contact. However, limited information is available on virus shedding or viremia in the captive wild felids, especially in Malaysia. Four infectious viruses of cat, feline herpesvirus (FHV), feline calicivirus (FCV), canine distemper virus (CDV), and canine parvovirus (CPV), were screened in leopards, feral cats, and tigers in Malaysia based on virus isolation in Crandell-Rees feline kidney (CRFK) cells, PCR/RT-PCR, and whole-genome sequencing analysis of the positive isolate. From a total of 36 sera collected, 11 samples showed three consecutive cytopathic effects in the cell culture and were subjected to PCR using specific primers for FHV, FCV, CDV, and CPV. Only one sample from a Malayan tiger was detected positive for CPV. The entire viral genome of CPV (UPM-CPV15/P. tigris jacksoni; GenBank Accession number MW380384) was amplified using the Sanger sequencing approach. Genome sequencing of the isolate revealed 99.13, 98.65, and 98.40% close similarity to CPV-31, CPV-d Cornell #320, and CPV-15 strains, respectively, and classified as CPV-2a. Time-scaled Bayesian Maximum Clade Credibility tree for the non-structural (NS) genes of CPV showed a close relationship to the isolates CPV-CN SD6_2014 and KSU7-SD_2004 from China and USA, respectively, while the capsid gene showed the same ancestor as the FPV-BJ04 strain from China. The higher evolution rate of the capsid protein (CP) (VP 1 and VP2) [1.649 × 10−5 (95% HPD: 7.626 × 10−3 to 7.440 × 10−3)] as compared to the NS gene [1.203 × 10−4 (95% HPD: 6.663 × 10−3 to 6.593 × 10−3)] was observed in the CPV from this study, and fairly higher than other parvovirus species from the Protoparvovirus genus. Genome sequencing of the isolated CPV from a Malayan tiger in the present study provides valuable information about the genomic characteristics of captive wild felids, which may add information on the presence of CPV in species other than dogs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wentian Liu ◽  
Huiyue Dong ◽  
Tingting Yan ◽  
Xuchun Liu ◽  
Jing Cheng ◽  
...  

Carbapenem-resistant Enterobacterales (CRE) pose a serious threat to clinical management and public health. We investigated the molecular characteristics of 12 IMP-4 metallo-β-lactamase-producing strains, namely, 5 Enterobacter cloacae, 3 Escherichia coli, 2 Klebsiella pneumoniae, and 2 Citrobacter freundii. These strains were collected from a tertiary teaching hospital in Zhengzhou from 2013 to 2015. The minimum inhibitory concentration (MIC) results showed that each blaIMP–4-positive isolate was multidrug-resistant (MDR) but susceptible to colistin. All of the E. coli belonged to ST167, two C. freundii isolates belonged to ST396, and diverse ST types were identified in E. cloacae and K. pneumoniae. S1-PFGE, Southern blotting, and PCR-based replicon typing assays showed that the blaIMP–4-carrying plasmids ranged from ∼52 to ∼360 kb and belonged to FII, FIB, HI2/HI2A, and N types. N plasmids were the predominant type (8/12, 66.7%). Plasmid stability testing indicated that the blaIMP–4-carrying N-type plasmid is more stable than the other types of plasmids. Conjugative assays revealed that three of the blaIMP–4-carrying N plasmids were transferrable. Complete sequence analysis of a representative N type (pIMP-ECL14–57) revealed that it was nearly identical to pIMP-FJ1503 (KU051710) (99% nucleotide identity and query coverage), an N-type blaIMP–4-carrying epidemic plasmid in a C. freundii strain. PCR mapping indicated that a transposon-like structure [IS6100-mobC-intron (K1.pn.I3)-blaIMP–4-IntI1-IS26] was highly conserved in all of the N plasmids. IS26 involved recombination events that resulted in variable structures of this transposon-like module in FII and FIB plasmids. The blaIMP–4 gene was captured by a sul1-type integron In1589 on HI2/HI2A plasmid pIMP-ECL-13–46.


2021 ◽  
Vol 9 (1) ◽  
pp. 195
Author(s):  
Mustafa Sadek ◽  
José Manuel Ortiz de la Rosa ◽  
Mohamed Abdelfattah Maky ◽  
Mohamed Korashe Dandrawy ◽  
Patrice Nordmann ◽  
...  

Colistin is considered as a last resort agent for treatment of severe infections caused by carbapenem-resistant Enterobacterales (CRE). Recently, plasmid-mediated colistin resistance genes (mcr type) have been reported, mainly corresponding to mcr-1 producers. Those mcr-1-positive Enterobacterales have been identified not only from human isolates, but also from food samples, from animal specimens and from environmental samples in various parts of the world. Our study focused on the occurrence and characterization of mcr-1-positive Enterobacterales recovered from retail raw chicken in Egypt. From the 345 retail chicken carcasses collected, a total of 20 samples allowed to recover mcr-1-positive isolates (Escherichia coli, n = 19; Citrobacter freundii, n = 1). No mcr-2- to mcr-10-positive isolate was identified from those samples. The colistin resistance trait was confirmed for all those 20 isolates with a positivity of the Rapid Polymyxin NP (Nordmann-Poirel) test. Minimum inhibitory concentrations (MICs) of colistin for all MCR-1-producing isolates ranged between 4 and 16 μg/mL. Noticeably, 9 out of the 20 mcr-1-positive isolates produced an extended-spectrum β-lactamase (ESBL), respectively producing CTX-M-9 (n = 2), CTX-M-14 (n = 4), CTX-M-15 (n = 2), and SHV-12 (n = 1). Noteworthy, the fosA4 gene encoding resistance to fosfomycin was found in a single mcr-1-positive E. coli isolate, in which both genes were located on different conjugative plasmids. The pulsed-field gel electrophoresis (PFGE) patterns were identified, corresponding to 10 different sequence types (STs), highlighting the genetic diversity of those different E. coli. Whole-genome sequencing revealed three major types of mcr-1-bearing plasmids, corresponding to IncI2, IncX4, and IncHI2 scaffolds. The occurrence of MCR-1-producing multidrug-resistant Enterobacterales in retail raw chicken is of great concern, considering the possibility of transmission to humans through the food chain.


2020 ◽  
pp. 306-315
Author(s):  
Daniela Vidaurre-Barahona ◽  
Amy Wang-Wong ◽  
Lorena Uribe-Lorío

Introduction. In Costa Rica, bacterial canker of mango has caused economic losses in most of the productive areas since the mid-1980s. The causal agents have been identified only by phenotypic methods such as Erwinia mangifera and E. herbicola. Objective. To confirm, using a molecular and phenotypic approach, the species of the Enterobacteriaceae the cause bacterial canker of mango in Costa Rica. Material and methods. Fruits, branches, and trunks with symptoms were collected in different orchards in the Alajuela province. Bacterial isolation was performed, and pathogenicity was evaluated by inoculating fruits and trunks of the Tommy Atkins variety. The positive isolates for the pathogenic test were re-inoculated, isolated, and identified in order to fulfill Koch’s postulates. The CIBCM-Mg-115 positive isolate that caused symptoms was analyzed by complete biochemical characterization and molecular identification by phylogenetic analyses of 16S rRNA and the atpD, gyrB, infB, and rpoB housekeeping genes. Results. According to the data obtained from the biochemical and molecular analysis, the CIBCM-Mg-115 strain was identified as Erwinia billingiae. Conclusion. E. billingiae corresponds to one of the causal agents of bacterial canker on mango (M. indica) trees in Costa Rica.


Author(s):  
Sophie Roth ◽  
Fabian K. Berger ◽  
Andreas Link ◽  
Anna Nimmesgern ◽  
Philipp M. Lepper ◽  
...  

Abstract Invasive infections caused by carbapenemase-producing bacteria are associated with excess mortality. We applied a rapid diagnostic test (RDT) on clinical samples with an elevated likelihood of carbapenemase-producing bacteria and documented its impact on antibiotic treatment decisions. Among 38 patients, twelve tested positive for infections caused by carbapenemase-producing bacteria (31.6%), mainly in blood cultures. KPC (n = 10) was more frequent than OXA-48 (n = 2). RDT-based carbapenemase detection led to a treatment modification to ceftazidime/avibactam-containing regimens in all patients before detailed antibiotic testing results became available. Eleven patients (92%) survived the acute infection, whereas one patient with a ceftazidime/avibactam- and colistin-resistant OXA-48-positive isolate died.


2020 ◽  
Vol 75 (11) ◽  
pp. 3126-3130
Author(s):  
Xinxin Shan ◽  
Xin-Sheng Li ◽  
Nannan Wang ◽  
Stefan Schwarz ◽  
Su-Mei Zhang ◽  
...  

Abstract Objectives To analyse the role of IS1216E in the dissemination of the phenicol-oxazolidinone-tetracycline resistance gene poxtA in an Enterococcus faecium clade A1 isolate. Methods MICs were determined by broth microdilution. The poxtA-positive isolate was typed by MLST. The two plasmids were characterized by PCR, conjugation, S1-PFGE, Southern blot hybridization and WGS analysis. The presence of translocatable units (TUs) was examined by PCR and sequencing. Results Isolate E1077 contains the 217661 bp conjugative plasmid pE1077-217 and the 23710 bp mobilizable plasmid pE1077-23. pE1077-217 harbours erm(B), aac(A)-aph(D), aadE, spw, lsa(E), lnu(B), aphA3 and dfrG, whereas pE1077-23 carries a Tn6657-like transposon containing poxtA and fexB. pE1077-23 was apparently formed by an IS1216E-mediated composite transposon–plasmid fusion event, involving a replicative transposition process. Conjugation experiments showed that pE1077-23 is mobilizable by pE1077-217. Moreover, a novel 31742 bp plasmid, pT-E1077-31, was found in a transconjugant. WGS analysis indicated that pT-E1077-31 was formed by the integration of a Tn6657-derived, IS1216E-based translocatable unit, which carried fexB and poxtA, into a copy of pE1077-23. Conclusions This study showed the presence of two cointegrate formation events in the formation and spread of a poxtA/fexB-carrying plasmid in E. faecium. One was the integration of a transposon into a plasmid while the other was the integration of a TU into a different site of the same type of plasmid-borne transposon from which it originated. In both events, IS1216E played a major role, suggesting that IS1216E-mediated transposition and translocation processes aid the dissemination and persistence of important antimicrobial resistance genes, such as poxtA, among enterococci.


Sign in / Sign up

Export Citation Format

Share Document