scholarly journals The SA85-1.1 Protein of the Trypanosoma cruzi trans-Sialidase Superfamily Is a Dominant T-Cell Antigen

2000 ◽  
Vol 68 (6) ◽  
pp. 3574-3580 ◽  
Author(s):  
Amanda E. Millar ◽  
Stuart J. Kahn

ABSTRACT Trypanosoma cruzi currently infects 18 million people, and 30% of those infected develop a chronic inflammatory process that causes significant morbidity or mortality. The major histocompatibility complex class II (MHC-II)-restricted T-cell response is critical to the control of the infection and to the ensuing inflammatory pathology. The specific epitopes or major antigens of this response have not been identified. The parasite simultaneously expresses variant members of the trans-sialidase superfamily. To begin to analyze the MHC-II response to these variant proteins, the response to a single surface protein, SA85-1.1, was initiated. These studies have demonstrated that a biased gamma interferon (IFN-γ) response to the SA85-1.1 protein develops during T. cruzi infection. In addition, adoptive transfer of a CD4 clone that recognizes an SA85-1.1 epitope, named epitope 1, and immunization with a peptide encoding epitope 1 were protective and suggested that epitope 1 may be immunodominant. In this report IFN-γ intracellular staining demonstrated that splenocytes from acutely and chronically infected mice, incubated with SA85-1.1 protein or peptides that encode epitope 1, result in IFN-γ synthesis by 4 to 6% of the splenic CD4 cells. These data indicate that during T. cruzi infection epitope 1 is a major epitope and that 4 to 6% of the CD4 cells are stimulated by a single trans-sialidase superfamily epitope and suggest that a combination of trans-sialidase superfamily proteins combines to stimulate a majority of CD4 cells. These data suggest that during T. cruzi infection the CD4 response to thetrans-sialidase superfamily is critical to the protective response and to the ensuing chronic inflammatory pathology.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 290-290
Author(s):  
Adrian Shepherd ◽  
Stuart Skelton ◽  
David Moss ◽  
Dan Hart

Abstract Neutralising antibodies (inhibitors) are increasingly recognized to be a life-time risk in non-severe hemophilia A patients exposed to factor VIII concentrates. It is currently not possible to reliably identify the variable inhibitor risk between individuals. Risk appears to differ between F8 genotypes but also for individuals living with the same F8 genotype. As a T cell dependent process, the wild-type, factor concentrate-derived peptide sequences spanning the F8 mutation position are presented by class II MHC and responsible for driving the T helper response and subsequent B cell response. We hypothesize that the primary sequences of the 20,469 proteins in the human proteome will, coincidentally, contain short primary sequences homologous to key immunogenic peptides derived from the therapeutic factor VIII. We present in silico data and correlation with published registry inhibitor data (Fisher's exact test) to demonstrate the potential impact of such "proteome protection" and future potential to more reliably stratify individuals between low/negligible risk and more significant risk of inhibitor formation. We utilize a well-validated, computational tool, NetMHC-II, to enable large scale, computational comparison of predicted antigen presentation between endogenous, mutated FVIII derived peptides and factor-concentrate derived, wild-type FVIII peptides spanning all 520 F8 missense mutations listed on www.hadb.org. NetMHC-II analyses peptide presentation by 14 class II MHC HLA-DR alleles, resulting in analysis of 7,280 (520 x 14) permutations of F8 -MHC-II. We identify 56% (n=4,077) of these permutations to be at low/negligible risk of inhibitor formation, at a binding threshold of 500nM, defined as absence of a novel peptide-MHC surface capable of driving a helper T cell response (p=0.005). When cross referenced with potential homologous sequences buried anywhere in the human proteome (http://www.ebi.ac.uk/reference_proteomes), a further 1,237 F8 -MHC-II combinations are afforded "proteome protection" due to direct sequence homology between FVIII-derived peptide and peptide(s) derived from other proteins. This increases the total number of F8 -MHC-II combinations predicted to be unable to drive a T cell response to 73% (n=5,314). The residual 1,966 (27%) F8 -MHC-II combinations are predicted to retain the ability to present novel-interface FVIII-derived peptides to T cells with an IC50<500nM (higher affinity). Previous work exploring in silico prediction of FVIII-derived peptide presentation may have overestimated the number of F8 -MHC II combinations deemed to be at risk of contributing to inhibitor formation. Our data suggests an additional mechanism "protecting" a larger proportion of those living with non-severe HA from inhibitor formation. The contribution of "proteome protection" further reduces the "at risk" F8 -MHC II permutations to be more representative of clinically observed inhibitor rates. We identify a potential novel tolerance mechanism and provide key data for future in vitro validation strategies. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran H. Chowdhury ◽  
Nandadeva Lokugamage ◽  
Nisha Jain Garg

A parasitic protozoan Trypanosoma cruzi (T. cruzi) is the etiologic agent of Chagas disease. Previously, we have identified T. cruzi antigens TcG2 and TcG4 as potential vaccine candidates, cloned in eukaryotic expression vector pCDNA3.1 (referred as p2/4) and tested their ability to elicit protection from T. cruzi infection. In the present study, we subcloned the two antigens in a nanoplasmid that is optimized for delivery, antigen expression, and regulatory compliance standards, and evaluated the nanovaccine (referred as nano2/4) for prophylactic protection against repeat T. cruzi infections. For this, C57BL/6 mice were immunized with two doses of p2/4 or nano2/4 at 21 days interval, challenged with T. cruzi 21 days after 2nd immunization, and euthanized at 10- and 21-days post-infection (pi) corresponding to parasite dissemination and replication phase, respectively. Some mice were re-challenged 21 days pi and monitored at 7 days after re-infection. Without the help of a vaccine, T. cruzi elicited delayed and sub-par T cell activation and low levels of effector molecules that failed to control tissue dissemination and replication of the parasite and provided no protection against repeat challenge infection. The nano2/4 was most effective in eliciting an early activation and production of IFN-γ by CD4+T effector/effector memory (TEM) cells and cytolytic perforin (PFN) and granzyme B (GZB) molecules by CD4+ and CD8+ TEM subsets at 10 days pi that was followed by robust expansion of CD4+ and CD8+ TEM and TCM cells with further increase in IFN-γ production at 21 days pi. Consequently, nano2/4-immunized mice exhibited potent control of parasite dissemination at 10 days pi, and tissue parasite burden and tissue inflammatory infiltrate and necrosis were barely detectable at 21 days pi. Furthermore, nano2/4-immunized mice responded to re-challenge infection with high levels of effector molecules production by CD4+ and CD8+ TEM subpopulations that offered even better control of tissue parasite burden than was observed after 1st infection. In comparison, non-vaccinated/infected mice exhibited clinical features of sickness and 59% mortality within 7 days after re-infection. In conclusion, we show that delivery of TcG2 and TcG4 in nanoplasmid offers excellent, protective T cell immunity against repeat T. cruzi infections.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2459-2466 ◽  
Author(s):  
Anders Österborg ◽  
Qing Yi ◽  
Lotta Henriksson ◽  
Jan Fagerberg ◽  
Susanne Bergenbrant ◽  
...  

Idiotypic structures expressed on the myeloma Ig protein might be regarded as a tumor-specific antigen. Five patients with IgG myeloma were immunized with the purified serum M-component by repeated intradermal injections together with soluble granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients developed an idiotype (Id)-specific T-cell immunity, defined as blood T cells predominantly secreting interferon-γ (IFN-γ) and interleukin-2 (IL-2) (type I cells). Id-specific DNA synthesis was induced in one patient. Delayed-type hypersensitivity against the Id was not evoked. The specific IFN-γ/IL-2 T-cell response was inhibited (46% to 100%) by a major histocompatibility complex (MHC) class I monoclonal antibody (MoAb) in all five patients. A 5% to 37% inhibition by an MHC class II MoAb was seen in four patients. CD4+ as well as CD8+ T cells enriched by magnetic microbeads contained Id-specific cells. The T cells recognized peptides corresponding to the complementarity-determining regions 1, 2, and 3 of the heavy chain of the Id. There was a transient rise of B cells producing IgM anti-idiotypic antibodies in all patients. The results indicate that immunization of myeloma patients using the autologous M-component and soluble GM-CSF may evoke an Id-specific predominantly MHC class I–restricted type I T-cell response.


2019 ◽  
Vol 3 (11) ◽  
pp. 1761-1773 ◽  
Author(s):  
Sanne M. Meinderts ◽  
Gabriella Baker ◽  
Stan van Wijk ◽  
Boukje M. Beuger ◽  
Judy Geissler ◽  
...  

Abstract Neutrophils are particularly well known for their antimicrobial function. Although historically they are regarded as strictly a phagocyte of the innate immune system, over time it has become clear that neutrophils are versatile cells with numerous functions including innate and adaptive immune regulation. We have previously described a role for human neutrophils in antibody-mediated red blood cell (RBC) clearance. Under homeostatic conditions, neutrophils do not take up RBCs. Yet, when RBCs are immunoglobulin G (IgG) opsonized, which can occur in alloimmunization or autoimmunization reactions, neutrophils can effectively phagocytose RBCs. In the present study, we show that human neutrophils acquire an antigen-presenting cell (APC) phenotype following RBC phagocytosis. Subsequent to RBC phagocytosis, neutrophils expressed major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40 and CD80. Moreover, in classical APCs, the respiratory burst is known to regulate antigen presentation. We found that the respiratory burst in neutrophils is reduced after IgG-mediated RBC phagocytosis. Additionally, following RBC phagocytosis, neutrophils were demonstrated to elicit an antigen-specific T-cell response, using tetanus toxoid (TT) as an antigen to elicit an autologous TT-specific CD4+ T-cell response. Lastly, although the “don’t eat me” signal CD47 is known to have a powerful restrictive role in the activation of immunity against RBCs in dendritic cells, CD47 does not seem to have a significant effect on the antigen-presenting function of neutrophils in this context. Overall, these findings reveal that besides their classical antimicrobial role, neutrophils show plasticity in their phenotype.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2459-2466 ◽  
Author(s):  
Anders Österborg ◽  
Qing Yi ◽  
Lotta Henriksson ◽  
Jan Fagerberg ◽  
Susanne Bergenbrant ◽  
...  

Abstract Idiotypic structures expressed on the myeloma Ig protein might be regarded as a tumor-specific antigen. Five patients with IgG myeloma were immunized with the purified serum M-component by repeated intradermal injections together with soluble granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients developed an idiotype (Id)-specific T-cell immunity, defined as blood T cells predominantly secreting interferon-γ (IFN-γ) and interleukin-2 (IL-2) (type I cells). Id-specific DNA synthesis was induced in one patient. Delayed-type hypersensitivity against the Id was not evoked. The specific IFN-γ/IL-2 T-cell response was inhibited (46% to 100%) by a major histocompatibility complex (MHC) class I monoclonal antibody (MoAb) in all five patients. A 5% to 37% inhibition by an MHC class II MoAb was seen in four patients. CD4+ as well as CD8+ T cells enriched by magnetic microbeads contained Id-specific cells. The T cells recognized peptides corresponding to the complementarity-determining regions 1, 2, and 3 of the heavy chain of the Id. There was a transient rise of B cells producing IgM anti-idiotypic antibodies in all patients. The results indicate that immunization of myeloma patients using the autologous M-component and soluble GM-CSF may evoke an Id-specific predominantly MHC class I–restricted type I T-cell response.


2015 ◽  
Vol 90 (2) ◽  
pp. 650-658 ◽  
Author(s):  
Shilpi Verma ◽  
Daniela Weiskopf ◽  
Ankan Gupta ◽  
Bryan McDonald ◽  
Bjoern Peters ◽  
...  

ABSTRACTCD4 T cells provide protection against cytomegalovirus (CMV) and other persistent viruses, and the ability to quantify and characterize epitope-specific responses is essential to gain a more precise understanding of their effector roles in this regard. Here, we report the first two I-Ad-restricted CD4 T cell responses specific for mouse CMV (MCMV) epitopes and use a major histocompatibility complex class II (MHC-II) tetramer to characterize their phenotypes and functions. We demonstrate that MCMV-specific CD4 T cells can express high levels of granzyme B and kill target cells in an epitope- and organ-specific manner. In addition, CD4 T cell epitope vaccination of immunocompetent mice reduced MCMV replication in the same organs where CD4 cytotoxic T lymphocyte (CTL) activity was observed. Together, our studies show that MCMV epitope-specific CD4 T cells have the potential to mediate antiviral defense by multiple effector mechanismsin vivo.IMPORTANCECD4 T cells mediate immune protection by using their T cell receptors to recognize specific portions of viral proteins, called epitopes, that are presented by major histocompatibility complex class II (MHC-II) molecules on the surfaces of professional antigen-presenting cells (APCs). In this study, we discovered the first two epitopes derived from mouse cytomegalovirus (MCMV) that are recognized by CD4 T cells in BALB/c mice, a mouse strain commonly used to study the pathogenesis of this virus infection. Here, we report the sequences of these epitopes, characterize the CD4 T cells that recognize them to fight off MCMV infection, and show that we can use the epitopes to vaccinate mice and protect against MCMV.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Marcela Hernández-Torres ◽  
Rogério Silva do Nascimento ◽  
Monica Cardozo Rebouças ◽  
Alexandra Cassado ◽  
Kely Catarine Matteucci ◽  
...  

AbstractChagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/−, Bim−/− mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim−/− mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/− mice. At the peak of parasitemia, peritoneal macrophages of Bim−/− mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim−/− splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim−/− mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim−/− mice and place Bim as an important protein in the control of T. cruzi infections.


2021 ◽  
Vol 9 (6) ◽  
pp. e002269
Author(s):  
Shota Aoyama ◽  
Ryosuke Nakagawa ◽  
Satoshi Nemoto ◽  
Patricio Perez-Villarroel ◽  
James J Mulé ◽  
...  

BackgroundThe temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth.MethodsC57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays.ResultsThe distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth.ConclusionsDespite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.


2014 ◽  
Vol 20 (10) ◽  
pp. 1312-1321 ◽  
Author(s):  
Jyothi T Mony ◽  
Reza Khorooshi ◽  
Trevor Owens

Background: Myelin-specific T cells are implicated in multiple sclerosis (MS) and drive experimental autoimmune encephalomyelitis (EAE). EAE is commonly induced with short peptides, whereas in MS, whole myelin proteins are available for immune response. We asked whether immunization with the immunoglobulin-like domain of myelin oligodendrocyte glycoprotein (MOGIgd, residues 1–125) might induce distinct CD4+ T-cell response and/or a stronger CD8+ T-cell response, compared to the 21 amino acid immunodominant MHC II-associating peptide (p35–55). Objectives: Compare both EAE and T-cell responses in C57BL/6 mice immunized with MOGIgd and MOG p35–55. Methods: Cytokine production, and chemokine receptor expression by CD4+ and CD8+ T cells in the mouse central nervous system (CNS), were analyzed by flow cytometry. Results: MOGIgd triggered progression to more severe EAE than MOG p35–55, despite similar time of onset and overall incidence. EAE in MOGIgd-immunized mice was characterized by an increased percentage of CXCR3+ interferon-γ-producing CD4+ T cells in CNS. The CD8+ T-cell response to both immunogens was similar. Conclusions: Increased incidence of severe disease following MOGIgd immunization, accompanied by an increased percentage of CD4+ T cells in the CNS expressing CXCR3 and producing interferon-γ, identifies a pathogenic role for interferon-γ that is not seen when disease is induced with a single Major Histocompatibility Complex (MHC) II-associating epitope.


1997 ◽  
Vol 186 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Kayo Inaba ◽  
Maggie Pack ◽  
Muneo Inaba ◽  
Hiraki Sakuta ◽  
Frank Isdell ◽  
...  

T lymphocytes recirculate continually through the T cell areas of peripheral lymph nodes. During each passage, the T cells survey the surface of large dendritic cells (DCs), also known as interdigitating cells. However, these DCs have been difficult to release from the lymph node. By emphasizing the use of calcium-free media, as shown by Vremec et al. (Vremec, D., M. Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, and K. Shortman. 1992. J. Exp. Med. 176:47–58.), we have been able to release and enrich DCs from the T cell areas. The DCs express the CD11c leukocyte integrin, the DEC-205 multilectin receptor for antigen presentation, the intracellular granule antigens which are recognized by monoclonal antibodies M342, 2A1, and MIDC-8, very high levels of MHC I and MHC II, and abundant accessory molecules such as CD40, CD54, and CD86. When examined with the Y-Ae monoclonal which recognizes complexes formed between I-Ab and a peptide derived from I-Eα, the T cell area DCs expressed the highest levels. The enriched DCs also stimulated a T-T hybridoma specific for this MHC II–peptide complex, and the hybridoma underwent apoptosis. Therefore DCs within the T cell areas can be isolated. Because they present very high levels of self peptides, these DCs should be considered in the regulation of self reactivity in the periphery.


Sign in / Sign up

Export Citation Format

Share Document