scholarly journals Mutagenesis and Functional Reconstitution of Chlamydial Major Outer Membrane Proteins: VS4 Domains Are Not Required for Pore Formation but Modify Channel Function

2001 ◽  
Vol 69 (3) ◽  
pp. 1671-1678 ◽  
Author(s):  
E. S. Hughes ◽  
K. M. Shaw ◽  
R. H. Ashley

ABSTRACT Chlamidial organisms are obligate intracellular pathogens containing highly antigenic porin-like major outer membrane proteins (MOMPs). MOMP epitopes are of substantial medical interest, and they cluster within four relatively short variable (VS) domains. If MOMPs adopt a β-barrel fold, like bacterial porins, the VS domains may form extramembranous loops and the conserved regions of the protein may correspond to predicted membrane-located β-strands. However, molecular studies on native MOMPs have been hampered by the need to culture chlamydiae in eukaryotic host cells and purification and reconstitution remain problematic. In addition, the organisms are difficult to manipulate genetically, and it has also been difficult to functionally reconstitute recombinant MOMPs. To help overcome these problems and improve our understanding of MOMP structure and function, we cloned and expressed C. trachomatis and C. psittaci MOMPs and functionally reconstituted them at the single-channel level. We measured significant functional differences between the two proteins, and by removing and exchanging VS4, we tested the hypothesis that the largest variable domain forms an extramembranous loop that contributes to these differences. Proteins in which VS4 was deleted continued to form functional ion channels, consistent with the idea that the domain forms an extramembranous protein loop and incompatible with models in which it contributes to predicted membrane-located β-strands. Additionally, the properties of the chimeric proteins strongly suggested that the VS4 domain interacts closely with other regions of the protein to form the channel entrance or vestibule. Our approach can be used to probe structure-function relationships in chlamydial MOMPs and may have implications for the generation of effective antichlamydial vaccines.

Author(s):  
Pantelis G. Bagos ◽  
Stavros J. Hamodrakas

ß-barrel outer membrane proteins constitute the second and less well-studied class of transmembrane proteins. They are present exclusively in the outer membrane of Gram-negative bacteria and presumably in the outer membrane of mitochondria and chloroplasts. During the last few years, remarkable advances have been made towards an understanding of their functional and structural features. It is now wellknown that ß-barrels are performing a large variety of biologically important functions for the bacterial cell. Such functions include acting as specific or non-specific channels, receptors for various compounds, enzymes, translocation channels, structural proteins, and adhesion proteins. All these functional roles are of great importance for the survival of the bacterial cell under various environmental conditions or for the pathogenic properties expressed by these organisms. This chapter reviews the currently available literature regarding the structure and function of bacterial outer membrane proteins. We emphasize the functional diversity expressed by a common structural motif such as the ß-barrel, and we provide evidence from the current literature for dozens of newly discovered families of transmembrane ß-barrels.


2007 ◽  
Vol 76 (3) ◽  
pp. 1223-1229 ◽  
Author(s):  
Henriette Macmillan ◽  
Junzo Norimine ◽  
Kelly A. Brayton ◽  
Guy H. Palmer ◽  
Wendy C. Brown

ABSTRACTThe outer membrane proteins (OMPs) of bacterial pathogens are essential for their growth and survival and especially for attachment and invasion of host cells. Since the outer membrane is the interface between the bacterium and the host cell, outer membranes and individual OMPs are targeted for development of vaccines against many bacterial diseases. Whole outer membrane fractions often protect against disease, and this protection cannot be fully reproduced by using individual OMPs. Exactly how the interactions among individual OMPs influence immunity is not well understood. We hypothesized that one OMP rich in T-cell epitopes can act as a carrier for an associated OMP which is poor in T-cell epitopes to generate T-dependent antibody responses, similar to the hapten-carrier effect. Major surface protein 1a (MSP1a) and MSP1b1 occur as naturally complexed OMPs in theAnaplasma marginaleouter membrane. Previous studies demonstrated that immunization with the native MSP1 heteromer induced strong immunoglobulin G (IgG) responses to both proteins, but only MSP1a stimulated strong CD4+T-cell responses. Therefore, to test our hypothesis, constructs of CD4+T-cell epitopes from MSP1a linked to MSP1b1 were compared with individually administered MSP1a and MSP1b1 for induction of MSP1b-specific IgG. By linking the T-cell epitopes from MSP1a to MSP1b1, significantly higher IgG titers against MSP1b1 were induced. Understanding how the naturally occurring intermolecular interactions between OMPs influence the immune response may lead to more effective vaccine design.


2019 ◽  
Author(s):  
Fen Yu ◽  
Zheng Zhang ◽  
Yuanqiang Zou ◽  
Ye Qiu ◽  
Aiping Wu ◽  
...  

AbstractMotivationReceptors on host cells play a critical role in viral infection. How phages select receptors is still unknown.ResultsHere, we manually curated a high-quality database named phageReceptor, including 355 pairs of phage-host receptor interactions, 280 unique viral species or sub-species and 64 bacterial species. Sugars and proteins were most widely used by phages as receptors. The receptor usage of phages in Gram-positive bacteria was different from that in Gram-negative bacteria. Most protein receptors were located on the outer membrane. The protein receptors were highly diverse in their structures, and had little homology with mammalian virus receptors. Further functional characterization of phage protein receptors in Escherichia coli showed that they had larger node degrees and betweennesses in the protein-protein interaction (PPI) network, and higher expression levels, than other outer membrane proteins, plasma membrane proteins, or other intracellular proteins. These findings were consistent with what observed for mammalian virus receptors, suggesting that viral protein receptors play a central role in the host’s PPI network. The study deepens our understanding of virus-host interactions.AvailabilityThe database of phageReceptor is publicly accessible at http://www.computationalbiology.cn/viralRecepetor/index.html.


2021 ◽  
pp. 2187-2196
Author(s):  
Aitbay K. Bulashev ◽  
Bakytkali K. Ingirbay ◽  
Kanatbek N. Mukantayev ◽  
Alfiya S. Syzdykova

Background and Aim: An accurate diagnosis of Brucella-infected animals is one of the critical measures in eradication programs. Conventional serological tests based on whole-cell (WC) antigens and detecting antibodies against pathogen-associated lipopolysaccharide might give false-positive results due to the cross-reactivity with other closely related bacteria. This study evaluated the serological potential of Brucella spp. chimeric outer membrane proteins (Omps) as antigens in an indirect enzyme-linked immunosorbent assay (i-ELISA). Materials and Methods: The chimeric gene constructs of the most immunodominant regions of Brucella Omps 25+31, 25+19, and 19+31 were cloned into the pET28a expression vectors and transformed into Escherichia coli BL21 (DE3). The serological potential of chimeric proteins compared with single recombinant Omps (rOmps)19, 25, and/or 31 were studied on blood serum samples of (i) a rabbit immunized with killed Brucella abortus 19WC, (ii) mice immunized with single rOmps, (iii) cows seropositive for brucellosis by rose Bengal test, and (iv) cattle naturally and/or experimentally infected with brucellosis. Results: E. coli BL21 actively produced Brucella chimeric rOmps, the concentration of which reached a maximum level at 6 h after isopropyl-β-D-1-thiogalactopyranoside stimulation. Target proteins were antigenic and expressed in an active state, as recognized by rabbit anti-B. abortus antibodies in an i-ELISA and western blotting. Murine antibodies against the single rOmps reacted with chimeric antigens, and conversely, antichimeric antibodies found their epitopes in single proteins. Brucella chimeric rOmps showed higher antigenicity in blood sera of seropositive cattle kept in the hotbed of the infection and/or experimentally challenged with brucellosis than single proteins. Conclusion: Brucella chimeric recombinant outer membrane proteins could be a potential antigen candidate for developing an ELISA test for accurate diagnosis of bovine brucellosis.


2008 ◽  
Vol 190 (13) ◽  
pp. 4568-4575 ◽  
Author(s):  
Jutta Nesper ◽  
Alexander Brosig ◽  
Philippe Ringler ◽  
Geetika J. Patel ◽  
Shirley A. Müller ◽  
...  

ABSTRACT Proteins belonging to the Omp85 family are involved in the assembly of β-barrel outer membrane proteins or in the translocation of proteins across the outer membrane in bacteria, mitochondria, and chloroplasts. The cell envelope of the thermophilic bacterium Thermus thermophilus HB27 is multilayered, including an outer membrane that is not well characterized. Neither the precise lipid composition nor much about integral membrane proteins is known. The genome of HB27 encodes one Omp85-like protein, Omp85Tt, representing an ancestral type of this family. We overexpressed Omp85Tt in T. thermophilus and purified it from the native outer membranes. In the presence of detergent, purified Omp85Tt existed mainly as a monomer, composed of two stable protease-resistant modules. Circular dichroism spectroscopy indicated predominantly β-sheet secondary structure. Electron microscopy of negatively stained lipid-embedded Omp85Tt revealed ring-like structures with a central cavity of ∼1.5 nm in diameter. Single-channel conductance recordings indicated that Omp85Tt forms ion channels with two different conducting states, characterized by conductances of ∼0.4 nS and ∼0.65 nS, respectively.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 363 ◽  
Author(s):  
Joshua Chu ◽  
Jun Liu ◽  
Timothy R. Hoover

A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.


Sign in / Sign up

Export Citation Format

Share Document