scholarly journals Helicobacter pylori Uses Motility for Initial Colonization and To Attain Robust Infection

2002 ◽  
Vol 70 (4) ◽  
pp. 1984-1990 ◽  
Author(s):  
Karen M. Ottemann ◽  
Andrew C. Lowenthal

ABSTRACT Helicobacter pylori has been shown to require flagella for infection of the stomach. To analyze whether flagella themselves or motility is needed by these pathogens, we constructed flagellated nonmotile mutants. This was accomplished by using both an insertion mutant and an in-frame deletion of the motB gene. In vitro, these mutants retain flagella (Fla+) but are nonmotile (Mot−). By using FVB/N mice, we found that these mutants had reduced ability to infect mice in comparison to that of their isogenic wild-type counterparts. When these mutants were coinfected with wild type, we were unable to detect any motB mutant. Finally, by analyzing the 50% infectious dose, we found that motility is needed for initial colonization of the stomach mucosa. These results support a model in which motility is used for the initial colonization of the stomach and also to attain full infection levels.

2005 ◽  
Vol 73 (3) ◽  
pp. 1820-1827 ◽  
Author(s):  
David J. McGee ◽  
Melanie L. Langford ◽  
Emily L. Watson ◽  
J. Elliot Carter ◽  
Yu-Ting Chen ◽  
...  

ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.


2007 ◽  
Vol 189 (24) ◽  
pp. 8914-8921 ◽  
Author(s):  
Anna Skoglund ◽  
Britta Björkholm ◽  
Christina Nilsson ◽  
Anders F. Andersson ◽  
Cecilia Jernberg ◽  
...  

ABSTRACT A large number of genes encoding restriction-modification (R-M) systems are found in the genome of the human pathogen Helicobacter pylori. R-M genes comprise approximately 10% of the strain-specific genes, but the relevance of having such an abundance of these genes is not clear. The type II methyltransferase (MTase) M.HpyAIV, which recognizes GANTC sites, was present in 60% of the H. pylori strains analyzed, whereof 69% were resistant to restriction enzyme digestion, which indicated the presence of an active MTase. H. pylori strains with an inactive M.HpyAIV phenotype contained deletions in regions of homopolymers within the gene, which resulted in premature translational stops, suggesting that M.HpyAIV may be subjected to phase variation by a slipped-strand mechanism. An M.HpyAIV gene mutant was constructed by insertional mutagenesis, and this mutant showed the same viability and ability to induce interleukin-8 in epithelial cells as the wild type in vitro but had, as expected, lost the ability to protect its self-DNA from digestion by a cognate restriction enzyme. The M.HpyAIV from H. pylori strain 26695 was overexpressed in Escherichia coli, and the protein was purified and was able to bind to DNA and protect GANTC sites from digestion in vitro. A bioinformatic analysis of the number of GANTC sites located in predicted regulatory regions of H. pylori strains 26695 and J99 resulted in a number of candidate genes. katA, a selected candidate gene, was further analyzed by quantitative real-time reverse transcription-PCR and shown to be significantly down-regulated in the M.HpyAIV gene mutant compared to the wild-type strain. This demonstrates the influence of M.HpyAIV methylation in gene expression.


2002 ◽  
Vol 184 (20) ◽  
pp. 5723-5732 ◽  
Author(s):  
Diana Marra Oram ◽  
Ana Avdalovic ◽  
Randall K. Holmes

ABSTRACT Transcription of the bacteriophage-borne diphtheria toxin gene tox is negatively regulated, in response to intracellular Fe2+ concentration, by the chromosomally encoded diphtheria toxin repressor (DtxR). Due to a scarcity of tools, genetic analysis of Corynebacterium diphtheriae has primarily relied on analysis of chemically induced and spontaneously occurring mutants and on the results of experiments with C. diphtheriae genes cloned in Escherichia coli or analyzed in vitro. We modified a Tn5-based mutagenesis technique for use with C. diphtheriae, and we used it to construct the first transposon insertion libraries in the chromosome of this gram-positive pathogen. We isolated two insertions that affected expression of DtxR, one 121 bp upstream of dtxR and the other within an essential region of the dtxR coding sequence, indicating for the first time that dtxR is a dispensable gene in C. diphtheriae. Both mutant strains secrete diphtheria toxin when grown in medium containing sufficient iron to repress secretion of diphtheria toxin by wild-type C. diphtheriae. The upstream insertion mutant still produces DtxR in decreased amounts and regulates siderophore secretion in response to iron in a manner similar to its wild-type parent. The mutant containing the transposon insertion within dtxR does not produce DtxR and overproduces siderophore in the presence of iron. Differences in the ability of the two mutant strains to survive oxidative stress also indicated that the upstream insertion retained slight DtxR activity, whereas the insertion within dtxR abolished DtxR activity. This is the first evidence that DtxR plays a role in protecting the cell from oxidative stress.


2004 ◽  
Vol 48 (10) ◽  
pp. 3782-3788 ◽  
Author(s):  
Masaaki Minami ◽  
Takafumi Ando ◽  
Shin-nosuke Hashikawa ◽  
Keizo Torii ◽  
Tadao Hasegawa ◽  
...  

ABSTRACT Glycine is the simplest amino acid and is used as a metabolic product in some bacteria. However, an excess of glycine inhibits the growth of many bacteria, and it is used as a nonspecific antiseptic agent due to its low level of toxicity in animals. The effect of glycine on Helicobacter pylori is not precisely known. The present study was conducted to investigate (i) the effect of glycine on clarithromycin (CLR)-resistant and -susceptible strains of H. pylori, (ii) the effect of glycine in combination with amoxicillin (AMX), and (iii) the postantibiotic effect (PAE). The MIC at which 90% of strains are inhibited for glycine was almost 2.5 mg/ml for 31 strains of H. pylori, including CLR-resistant strains. We constructed isogenic CLR-resistant mutant strains by natural transformation and investigated the difference between clinical wild-type strains and isogenic mutants. There were no differences in the MICs between CLR-resistant and -susceptible strains or between clinical wild-type and mutant strains. The combination of AMX and glycine showed synergistic activity, with the minimum bactericidal concentration of AMX with glycine decreasing to 1/10 that of AMX alone. Glycine showed no PAE against H. pylori. These results suggest that glycine may be a useful antimicrobial agent against H. pylori not only alone but also in combination with antibacterial drugs for the treatment of H. pylori-associated diseases. Glycine may represent a component of a new type of eradication therapy for CLR-resistant H. pylori.


2011 ◽  
Vol 79 (9) ◽  
pp. 3665-3676 ◽  
Author(s):  
Brian C. Russo ◽  
Joseph Horzempa ◽  
Dawn M. O'Dee ◽  
Deanna M. Schmitt ◽  
Matthew J. Brown ◽  
...  

ABSTRACTTularemia is a debilitating febrile illness caused by the category A biodefense agentFrancisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by whichF. tularensissenses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions ofF. tularensiswith host cells. However, it is not known whether responsiveness to polyamines is necessary for the virulence of the organism. Through transposon mutagenesis ofF. tularensissubsp.holarcticalive vaccine strain (LVS), we identified FTL_0883 as a gene important for spermine responsiveness. In-frame deletion mutants of FTL_0883 and FTT_0615c, the homologue of FTL_0883 inF. tularensissubsp.tularensisSchu S4 (Schu S4), elicited higher levels of cytokines from human and murine macrophages compared to wild-type strains. Although deletion of FTL_0883 attenuated LVS replication within macrophagesin vitro, the Schu S4 mutant with a deletion in FTT_0615c replicated similarly to wild-type Schu S4. Nevertheless, both the LVS and the Schu S4 mutants were significantly attenuatedin vivo. Growth and dissemination of the Schu S4 mutant was severely reduced in the murine model of pneumonic tularemia. This attenuation depended on host responses to elevated levels of proinflammatory cytokines. These data associate responsiveness to polyamines with tularemia pathogenesis and define FTL_0883/FTT_0615c as anF. tularensisgene important for virulence and evasion of the host immune response.


2002 ◽  
Vol 70 (10) ◽  
pp. 5877-5881 ◽  
Author(s):  
Tessa M. Andermann ◽  
Yu-Ting Chen ◽  
Karen M. Ottemann

ABSTRACT Helicobacter pylori must be motile or display chemotaxis to be able to fully infect mammals, but it is not known how this chemotaxis is directed. We disrupted two genes encoding predicted chemoreceptors, tlpA and tlpC. H. pylori mutants lacking either of these genes are fully motile and chemotactic in vitro and are as able as the wild type to infect mice when they are the sole infecting strains. In contrast, when mice are coinfected with the H. pylori SS1 tlpA or tlpC mutant and the wild type, we find more wild type than mutant after 2 weeks of colonization. Neither strain has an in vitro growth defect. These results suggest that the tlpA- and tlpC-encoded proteins assist colonization of the stomach environment.


2004 ◽  
Vol 72 (6) ◽  
pp. 3429-3435 ◽  
Author(s):  
Ewa E. Hennig ◽  
Ray Mernaugh ◽  
Jennifer Edl ◽  
Ping Cao ◽  
Timothy L. Cover

ABSTRACT The BabA adhesin of Helicobacter pylori is an outer membrane protein that binds to the fucosylated Lewis b histo-blood group antigen on the surface of gastric epithelial cells. We screened a phage-displayed ScFv (single-chain fragment variable) recombinant antibody library for antibodies reactive with a recombinant BabA fragment and identified two such antibodies. Each antibody recognized an ∼75-kDa protein present in wild-type H. pylori strain J99 but absent from an isogenic babA mutant strain. An immunoreactive BabA protein was detected by at least one of the antibodies in 18 (46%) of 39 different wild-type H. pylori strains and was detected more commonly in cagA-positive strains than in cagA-negative strains. Numerous amino acid polymorphisms were detected among BabA proteins expressed by different strains, with the greatest diversity occurring in the middle region of the proteins. Among the 18 strains that expressed a detectable BabA protein, there was considerable variation in the level of binding to Lewis b in vitro. Heterogeneity among H. pylori strains in expression of the BabA protein may be a factor that contributes to differing clinical outcomes among H. pylori-infected humans.


2006 ◽  
Vol 188 (15) ◽  
pp. 5510-5523 ◽  
Author(s):  
Mary E. Davey ◽  
Margaret J. Duncan

ABSTRACT Periodontitis is a biofilm-mediated disease. Porphyromonas gingivalis is an obligate anaerobe consistently associated with severe manifestations of this disease. As an opportunistic pathogen, the ability to proliferate within and disseminate from subgingival biofilm (plaque) is central to its virulence. Here, we report the isolation of a P. gingivalis transposon insertion mutant altered in biofilm development and the reconstruction and characterization of this mutation in three different wild-type strains. The mutation responsible for the altered biofilm phenotype was in a gene with high sequence similarity (∼61%) to a glycosyltransferase gene. The gene is located in a region of the chromosome that includes up to 16 genes predicted to be involved in the synthesis and transport of capsular polysaccharide. The phenotype of the reconstructed mutation in all three wild-type backgrounds is that of enhanced biofilm formation. In addition, in strain W83, a strain that is encapsulated, the glycosyltransferase mutation resulted in a loss of capsule. Further experiments showed that the W83 mutant strain was more hydrophobic and exhibited increased autoaggregation. Our results indicate that we have identified a gene involved in capsular-polysaccharide synthesis in P. gingivalis and that the production of capsule prevented attachment and the initiation of in vitro biofilm formation on polystyrene microtiter plates.


2007 ◽  
Vol 75 (8) ◽  
pp. 3747-3757 ◽  
Author(s):  
Susan M. Williams ◽  
Yu-Ting Chen ◽  
Tessa M. Andermann ◽  
J. Elliot Carter ◽  
David J. McGee ◽  
...  

ABSTRACT The ulcer-causing pathogen Helicobacter pylori uses directed motility, or chemotaxis, to both colonize the stomach and promote disease development. Previous work showed that mutants lacking the TlpB chemoreceptor, one of the receptors predicted to drive chemotaxis, led to less inflammation in the gerbil stomach than did the wild type. Here we expanded these findings and examined the effects on inflammation of completely nonchemotactic mutants and mutants lacking each chemoreceptor. Of note, all mutants colonized mice to the same levels as did wild-type H. pylori. Infection by completely nonchemotactic mutants (cheW or cheY) resulted in significantly less inflammation after both 3 and 6 months of infection. Mutants lacking either the TlpA or TlpB H. pylori chemotaxis receptors also had alterations in inflammation severity, while mutants lacking either of the other two chemoreceptors (TlpC and HylB) behaved like the wild type. Fully nonchemotactic and chemoreceptor mutants adhered to cultured gastric epithelial cells and caused cellular release of the chemokine interleukin-8 in vitro similar to the release caused by the wild type. The situation appeared to be different in the stomach. Using silver-stained histological sections, we found that nonchemotactic cheY or cheW mutants were less likely than the wild type to be intimately associated with the cells of the gastric mucosa, although there was not a strict correlation between intimate association and inflammation. Because others have shown that in vivo adherence promotes inflammation, we propose a model in which H. pylori uses chemotaxis to guide it to a productive interaction with the stomach epithelium.


2008 ◽  
Vol 190 (23) ◽  
pp. 7633-7644 ◽  
Author(s):  
Roslyn N. Brown ◽  
Paul A. Gulig

ABSTRACT The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the ΔfadR mutation was complemented in trans with the wild-type gene. Further characterization of the ΔfadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the ΔfadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.


Sign in / Sign up

Export Citation Format

Share Document