scholarly journals Enhanced Biofilm Formation and Loss of Capsule Synthesis: Deletion of a Putative Glycosyltransferase in Porphyromonas gingivalis

2006 ◽  
Vol 188 (15) ◽  
pp. 5510-5523 ◽  
Author(s):  
Mary E. Davey ◽  
Margaret J. Duncan

ABSTRACT Periodontitis is a biofilm-mediated disease. Porphyromonas gingivalis is an obligate anaerobe consistently associated with severe manifestations of this disease. As an opportunistic pathogen, the ability to proliferate within and disseminate from subgingival biofilm (plaque) is central to its virulence. Here, we report the isolation of a P. gingivalis transposon insertion mutant altered in biofilm development and the reconstruction and characterization of this mutation in three different wild-type strains. The mutation responsible for the altered biofilm phenotype was in a gene with high sequence similarity (∼61%) to a glycosyltransferase gene. The gene is located in a region of the chromosome that includes up to 16 genes predicted to be involved in the synthesis and transport of capsular polysaccharide. The phenotype of the reconstructed mutation in all three wild-type backgrounds is that of enhanced biofilm formation. In addition, in strain W83, a strain that is encapsulated, the glycosyltransferase mutation resulted in a loss of capsule. Further experiments showed that the W83 mutant strain was more hydrophobic and exhibited increased autoaggregation. Our results indicate that we have identified a gene involved in capsular-polysaccharide synthesis in P. gingivalis and that the production of capsule prevented attachment and the initiation of in vitro biofilm formation on polystyrene microtiter plates.

2011 ◽  
Vol 80 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Chen Li ◽  
Kurniyati ◽  
Bo Hu ◽  
Jiang Bian ◽  
Jianlan Sun ◽  
...  

ABSTRACTThe oral bacteriumPorphyromonas gingivalisis a key etiological agent of human periodontitis, a prevalent chronic disease that affects up to 80% of the adult population worldwide.P. gingivalisexhibits neuraminidase activity. However, the enzyme responsible for this activity, its biochemical features, and its role in the physiology and virulence ofP. gingivalisremain elusive. In this report, we found thatP. gingivalisencodes a neuraminidase, PG0352 (SiaPg). Transcriptional analysis showed thatPG0352is monocistronic and is regulated by a sigma70-like promoter. Biochemical analyses demonstrated that SiaPgis an exo-α-neuraminidase that cleaves glycosidic-linked sialic acids. Cryoelectron microscopy and tomography analyses revealed that thePG0352deletion mutant (ΔPG352) failed to produce an intact capsule layer. Compared to the wild type,in vitrostudies showed that ΔPG352 formed less biofilm and was less resistant to killing by the host complement.In vivostudies showed that while the wild type caused a spreading type of infection that affected multiple organs and all infected mice were killed, ΔPG352 only caused localized infection and all animals survived. Taken together, these results demonstrate that SiaPgis an important virulence factor that contributes to the biofilm formation, capsule biosynthesis, and pathogenicity ofP. gingivalis, and it can potentially serve as a new target for developing therapeutic agents againstP. gingivalisinfection.


2018 ◽  
Author(s):  
Surya D. Aggarwal ◽  
Rory Eutsey ◽  
Jacob West-Roberts ◽  
Arnau Domenech ◽  
Wenjie Xu ◽  
...  

AbstractStreptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that causes otitis media, sinusitis, pneumonia, meningitis and sepsis. The progression to this pathogenic lifestyle is preceded by asymptomatic colonization of the nasopharynx. This colonization is associated with biofilm formation; the competence pathway influences the structure and stability of biofilms. However, the molecules that link the competence pathway to biofilm formation are unknown. Here, we describe a new competence-induced gene, called briC, and demonstrate that its product promotes biofilm development and stimulates colonization in a murine model. We show that expression of briC is induced by the master regulator of competence, ComE. Whereas briC does not substantially influence early biofilm development on abiotic surfaces, it significantly impacts later stages of biofilm development. Specifically, briC expression leads to increases in biofilm biomass and thickness at 72h. Consistent with the role of biofilms in colonization, briC promotes nasopharyngeal colonization in the murine model. The function of BriC appears to be conserved across pneumococci, as comparative genomics reveal that briC is widespread across isolates. Surprisingly, many isolates, including strains from clinically important PMEN1 and PMEN14 lineages, which are widely associated with colonization, encode a long briC promoter. This long form captures an instance of genomic plasticity and functions as a competence-independent expression enhancer that may serve as a precocious point of entry into this otherwise competence-regulated pathway. Moreover, overexpression of briC by the long promoter fully rescues the comE-deletion induced biofilm defect in vitro, and partially in vivo. These findings indicate that BriC may bypass the influence of competence in biofilm development and that such a pathway may be active in a subset of pneumococcal lineages. In conclusion, BriC is a part of the complex molecular network that connects signaling of the competence pathway to biofilm development and colonization.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241019
Author(s):  
Wee-Han Poh ◽  
Jianqing Lin ◽  
Brendan Colley ◽  
Nicolai Müller ◽  
Boon Chong Goh ◽  
...  

The critical role of bacterial biofilms in chronic human infections calls for novel anti-biofilm strategies targeting the regulation of biofilm development. However, the regulation of biofilm development is very complex and can include multiple, highly interconnected signal transduction/response pathways, which are incompletely understood. We demonstrated previously that in the opportunistic, human pathogen P. aeruginosa, the PP2C-like protein phosphatase SiaA and the di-guanylate cyclase SiaD control the formation of macroscopic cellular aggregates, a type of suspended biofilms, in response to surfactant stress. In this study, we demonstrate that the SiaABC proteins represent a signal response pathway that functions through a partner switch mechanism to control biofilm formation. We also demonstrate that SiaABCD functionality is dependent on carbon substrate availability for a variety of substrates, and that upon carbon starvation, SiaB mutants show impaired dispersal, in particular with the primary fermentation product ethanol. This suggests that carbon availability is at least one of the key environmental cues integrated by the SiaABCD system. Further, our biochemical, physiological and crystallographic data reveals that the phosphatase SiaA and its kinase counterpart SiaB balance the phosphorylation status of their target protein SiaC at threonine 68 (T68). Crystallographic analysis of the SiaA-PP2C domain shows that SiaA is present as a dimer. Dynamic modelling of SiaA with SiaC suggested that SiaA interacts strongly with phosphorylated SiaC and dissociates rapidly upon dephosphorylation of SiaC. Further, we show that the known phosphatase inhibitor fumonisin inhibits SiaA mediated phosphatase activity in vitro. In conclusion, the present work improves our understanding of how P. aeuruginosa integrates specific environmental conditions, such as carbon availability and surfactant stress, to regulate cellular aggregation and biofilm formation. With the biochemical and structural characterization of SiaA, initial data on the catalytic inhibition of SiaA, and the interaction between SiaA and SiaC, our study identifies promising targets for the development of biofilm-interference drugs to combat infections of this aggressive opportunistic pathogen.


2006 ◽  
Vol 74 (3) ◽  
pp. 1588-1596 ◽  
Author(s):  
Melanie M. Pearson ◽  
Cassie A. Laurence ◽  
Sarah E. Guinn ◽  
Eric J. Hansen

ABSTRACT Mutant analysis was used to identify Moraxella catarrhalis gene products necessary for biofilm development in a crystal violet-based assay involving 24-well tissue culture plates. The wild-type M. catarrhalis strains that formed the most extensive biofilms in this system proved to be refractory to transposon mutagenesis, so an M. catarrhalis strain was constructed that was both able to form biofilms in vitro and amenable to transposon mutagenesis. Chromosomal DNA from the biofilm-positive strain O46E was used to transform the biofilm-negative strain O35E; transformants able to form biofilms were identified and subjected to transposon-mediated mutagenesis. Biofilm-negative mutants of these transformants were shown to have a transposon insertion in the uspA1 gene. Nucleotide sequence analysis revealed that the biofilm-positive transformant T14 contained a hybrid O46E-O35E uspA1 gene, with the N-terminal 155 amino acids being derived from the O46E UspA1 protein. Transformant T14 was also shown to be unable to express the Hag protein, which normally extends from the surface of the M. catarrhalis cell. Introduction of a wild-type O35E hag gene into T14 eliminated its ability to form a biofilm. When the hybrid O46E-O35E uspA1 gene from T14 was used to replace the uspA1 gene of O35E, this transformant strain did not form a biofilm. However, inactivation of the hag gene did allow biofilm formation by strain O35E expressing the hybrid O46E-O35E uspA1 gene product. The Hag protein was shown to have an inhibitory or negative effect on biofilm formation by these M. catarrhalis strains in the crystal violet-based assay.


2010 ◽  
Vol 192 (20) ◽  
pp. 5275-5288 ◽  
Author(s):  
Olga E. Petrova ◽  
Karin Sauer

ABSTRACT The formation of biofilms by the opportunistic pathogen Pseudomonas aeruginosa is a developmental process governed by a novel signal transduction system composed of three two-component regulatory systems (TCSs), BfiSR, BfmSR, and MifSR. Here, we show that BfiSR-dependent arrest of biofilm formation coincided with reduced expression of genes involved in virulence, posttranslational/transcriptional modification, and Rhl quorum sensing but increased expression of rhlAB and the small regulatory RNAs rsmYZ. Overexpression of rsmZ, but not rsmY, coincided with impaired biofilm development similar to inactivation of bfiS and retS. We furthermore show that BfiR binds to the 5′ untranslated region of cafA encoding RNase G. Lack of cafA expression coincided with impaired biofilm development and increased rsmYZ levels during biofilm growth compared to the wild type. Overexpression of cafA restored ΔbfiS biofilm formation to wild-type levels and reduced rsmZ abundance. Moreover, inactivation of bfiS resulted in reduced virulence, as revealed by two plant models of infection. This work describes the regulation of a committed biofilm developmental step following attachment by the novel TCS BfiSR through the suppression of sRNA rsmZ via the direct regulation of RNase G in a biofilm-specific manner, thus underscoring the importance of posttranscriptional mechanisms in controlling biofilm development and virulence.


2001 ◽  
Vol 69 (4) ◽  
pp. 2512-2519 ◽  
Author(s):  
Eunice H. Froeliger ◽  
Paula Fives-Taylor

ABSTRACT The sanguis streptococci are primary colonizers of the tooth surface and thus form the foundation for the complex multiple species biofilm known as dental plaque. In addition, these bacteria can colonize native and prosthetic heart valves and are a common cause of endocarditis. Little is known about the molecular mechanisms governing multiple or single species biofilm development within this group of organisms. Using an in vitro assay for biofilm formation, we determined that (i) Streptococcus parasanguis FW213 can form biofilms on inert surfaces such as polystyrene and (ii) environmental and nutritional factors, such as glucose, affect S. parasanguisbiofilm formation. Several isogenic mutants of FW213 were tested in the biofilm assay. Strains containing mutations in fap1, a gene encoding a protein required for assembly of fimbriae, were deficient in biofilm formation. Mutants defective in recA, PepO endopeptidase activity, or the production of a fimbriae-associated protein, FimA, were still capable of biofilm formation. Phase-contrast microscopy was used to follow biofilm development by wild-type andfap1 mutant strains on plastic coverslips over time. Wild-type FW213 attached to the surface, formed aggregates of cells, and eventually formed a dense layer of cells that included microcolonies. In contrast, few fap1 mutant cells were observed attached to the surface, and no cell aggregates or microcolonies were formed. These results suggest that the long peritrichous fimbriae of FW213 are critical for the formation of biofilms on solid surfaces.


mBio ◽  
2016 ◽  
Vol 7 (5) ◽  
Author(s):  
Michael B. Winter ◽  
Eugenia C. Salcedo ◽  
Matthew B. Lohse ◽  
Nairi Hartooni ◽  
Megha Gulati ◽  
...  

ABSTRACT Candida albicans is a fungal species that is part of the normal human microbiota and also an opportunistic pathogen capable of causing mucosal and systemic infections. C. albicans cells proliferate in a planktonic (suspension) state, but they also form biofilms, organized and tightly packed communities of cells attached to a solid surface. Biofilms colonize many niches of the human body and persist on implanted medical devices, where they are a major source of new C. albicans infections. Here, we used an unbiased and global substrate-profiling approach to discover proteolytic activities produced specifically by C. albicans biofilms, compared to planktonic cells, with the goal of identifying potential biofilm-specific diagnostic markers and targets for therapeutic intervention. This activity-based profiling approach, coupled with proteomics, identified Sap5 (Candidapepsin-5) and Sap6 (Candidapepsin-6) as major biofilm-specific proteases secreted by C. albicans . Fluorogenic peptide substrates with selectivity for Sap5 or Sap6 confirmed that their activities are highly upregulated in C. albicans biofilms; we also show that these activities are upregulated in other Candida clade pathogens. Deletion of the SAP5 and SAP6 genes in C. albicans compromised biofilm development in vitro in standard biofilm assays and in vivo in a rat central venous catheter biofilm model. This work establishes secreted proteolysis as a promising enzymatic marker and potential therapeutic target for Candida biofilm formation. IMPORTANCE Biofilm formation by the opportunistic fungal pathogen C. albicans is a major cause of life-threatening infections. This work provides a global characterization of secreted proteolytic activity produced specifically by C. albicans biofilms. We identify activity from the proteases Sap5 and Sap6 as highly upregulated during C. albicans biofilm formation and develop Sap-cleavable fluorogenic substrates that enable the detection of biofilms from C. albicans and also from additional pathogenic Candida species. Furthermore, SAP5 and SAP6 deletions confirm that both proteases are required for proper biofilm development in vitro and in vivo . We propose that secreted proteolysis is a promising marker for the diagnosis and potential therapeutic targeting of Candida biofilm-associated infections.


2006 ◽  
Vol 189 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Kai Shyang Koh ◽  
Kin Wai Lam ◽  
Morten Alhede ◽  
Shu Yeong Queck ◽  
Maurizio Labbate ◽  
...  

ABSTRACT We report here the characterization of dispersal variants from microcolony-type biofilms of Serratia marcescens MG1. Biofilm formation proceeds through a reproducible process of attachment, aggregation, microcolony development, hollow colony formation, and dispersal. From the time when hollow colonies were observed in flow cell biofilms after 3 to 4 days, at least six different morphological colony variants were consistently isolated from the biofilm effluent. The timing and pattern of variant formation were found to follow a predictable sequence, where some variants, such as a smooth variant with a sticky colony texture (SSV), could be consistently isolated at the time when mature hollow colonies were observed, whereas a variant that produced copious amounts of capsular polysaccharide (SUMV) was always isolated at late stages of biofilm development and coincided with cell death and biofilm dispersal or sloughing. The morphological variants differed extensively from the wild type in attachment, biofilm formation, and cell ultrastructure properties. For example, SSV formed two- to threefold more biofilm biomass than the wild type in batch biofilm assays, despite having a similar growth rate and attachment capacity. Interestingly, the SUMV, and no other variants, was readily isolated from an established SSV biofilm, indicating that the SUMV is a second-generation genetic variant derived from SSV. Planktonic cultures showed significantly lower frequencies of variant formation than the biofilms (5.05 × 10−8 versus 4.83 × 10−6, respectively), suggesting that there is strong, diversifying selection occurring within biofilms and that biofilm dispersal involves phenotypic radiation with divergent phenotypes.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


Sign in / Sign up

Export Citation Format

Share Document