scholarly journals Regulation of Expression of the Borrelia burgdorferi β3-Chain Integrin Ligand, P66, in Ticks and in Culture

2003 ◽  
Vol 71 (2) ◽  
pp. 1001-1007 ◽  
Author(s):  
Carla Cugini ◽  
Melisa Medrano ◽  
Tom G. Schwan ◽  
Jenifer Coburn

ABSTRACT Borrelia burgdorferi is maintained in an infection cycle between mammalian and arthropod hosts. Appropriate gene expression by B. burgdorferi at different stages of this cycle is probably essential for transmission and establishment of infection. The B. burgdorferi β3 integrin ligand P66 is expressed by the bacteria in mammals, laboratory culture, and engorged but not unfed ticks. No in vitro culture conditions in which P66 expression reflected that in the unfed tick were found, suggesting that there are aspects of B. burgdorferi-tick interaction that remain unexplored.

2018 ◽  
Vol 30 (1) ◽  
pp. 226
Author(s):  
F. C. Castro ◽  
L. Schefer ◽  
K. L. Schwarz ◽  
H. Fernandes ◽  
R. C. Botigelli ◽  
...  

Melatonin mediates several processes in animal reproduction and has drawn attention for its potent antioxidant, anti-apoptotic, anti-inflammatory action and, more recently, for its benefits on oocyte maturation and embryo development in vitro. The aim of this study was to assess the effect of melatonin during the in vitro maturation (IVM) on nuclear maturation of bovine oocytes and gene expression in their corresponding cumulus cells (CC). Bovine cumulus–oocyte complexes (COC) were obtained by aspiration of follicles (2-6 mm) from slaughterhouse ovaries, selected (grades I and II) and transferred to 4 well plates (25-30 COC/well) containing IVM medium [TCM-199 supplemented with sodium bicarbonate (26 mM), sodium pyruvate (0.25 mM), FSH (0.5 µg mL−1), LH (5.0 µg mL−1), 0.3% BSA, and gentamicin (50 µg mL−1)] with 0, 10−5, 10−7, 10−9 or 10−11 M melatonin and cultured for 24 h at 38.5°C and 5% CO2. At the end of IVM, oocytes were stained with Hoechst 33342 (10 μg mL−1) and evaluated for nuclear maturation rate. The CC were evaluated for the expression of antioxidant (SOD1, SOD2, GPX4), pro-apoptotic (P53, BAX) and expansion-related genes (PTX3, HAS1, HAS2). For transcript detection in CC, RNA isolation was performed with TRIzol®Reagent (Invitrogen, Carlsbad, CA, USA) and reverse transcription with High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA). Relative quantification of transcripts was performed by RT-qPCR using 3 endogenous controls (β-actin, GAPDH, PPIA). Nuclear maturation rate and gene expression were tested by ANOVA and means were compared by Tukey’s test (6 replicates). In CC, the different concentrations of melatonin did not significantly alter expression of the investigated genes (P > 0.05), although all concentrations provided a numerical increase in the expression of the antioxidant SOD1 and of the expansion-related genes PTX3 and HAS2. Regarding the pro-apoptotic genes, concentrations of 10−11 and 10−9 M were able to reduce only numerically the expression of BAX and P53, respectively. In oocytes, the rate of nuclear maturation was not different among the tested treatments (P > 0.05), but it was numerically higher in the 10−7 M melatonin treated group compared with the control (69.71 ± 13.76% v. 88.1 ± 12.54%). In conclusion, under the studied conditions, melatonin was unable to improve maturation rate or to affect the expression of antioxidant, pro-apoptotic, and expansion-related genes in CC. Melatonin during IVM has shown variable results in different studies and appears to show different effects depending on culture conditions and parameters studied. In order to take advantage of the possible positive antioxidant effects of melatonin, other culture conditions and parameters should be investigated. In a next step, melatonin will be included during in vitro culture of embryos to evaluate its possible cytoprotective role, because such embryos are more exposed to oxidative stress during in vitro culture, and to investigate its benefits on developmental competence in vitro. This reaesrch was funded by FAPESP (2015/20379-0; 2014/17181-0).


2013 ◽  
Vol 25 (1) ◽  
pp. 254 ◽  
Author(s):  
A. Gad ◽  
U. Besenfelder ◽  
V. Havlicek ◽  
M. Hölker ◽  
M. U. Cinar ◽  
...  

The aim of this study was to examine the effect of in vitro culture conditions at specific phases of early embryonic development on the transcriptome profile of bovine blastocysts. Simmental heifers were superovulated and artificially inseminated 2 times with the same frozen–thawed commercial bull semen. Using nonsurgical endoscopic oviductal flushing technology (Besenfelder et al. 2001 Theriogenology 55, 837–845), 6 different blastocyst groups were flushed out at different time points (2-, 4-, 8-, 16-, 32-cell and morula). After flushing, embryos cultured under in vitro conditions until the blastocyst stage. Blastocysts from each group were collected and pooled in groups of 10. Complete in vivo blastocysts were produced and used as control. A unique custom microarray (Agilent) containing 42 242 oligo probes (60-mers) was used over 6 replicates of each group v. the in vivo control group to examine the transcriptome profile of blastocysts. A clear difference in terms of the number of differentially expressed genes (DEG, fold change ≥2, false discovery rate ≤0.05) has been found between groups flushed out at 2-, 4-, and 8-cell (1714, 1918, 1292 DEG, respectively) and those flushed out at 16-, 32-cell and morula stages and cultured in vitro until blastocyst stage (311, 437, 773 DEG, respectively) compared with the complete vivo group. Ontological classification of DEG showed cell death to be the most significant function in all groups. However, the longer time embryos spent under in vitro conditions, the more the percentage of DEG involved in cell death and apoptosis processes are represented in those groups. In addition, genes related to post-translational modification and gene expression processes were significantly dysregulated in all groups. Pathway analysis revealed that protein ubiquitination pathway was the dominant pathway in the groups flushed out at 2-, 4-, and 8-cells but not in the other groups flushed at later stages compared with the in vivo control group. Moreover, retinoic acid receptor activation and apoptosis signalling pathways followed the same pattern. Embryos flushed out before the time of embryonic genome activation and subsequently cultured in vitro were highly affected by culture conditions. Overall, the results of the present study showed that despite the fact that embryos originated from the same source, in vitro culture condition affected embryo quality, measured in terms of gene expression, in a stage-specific manner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


1986 ◽  
Vol 6 (6) ◽  
pp. 2262-2266 ◽  
Author(s):  
J A Lewis ◽  
D A Matkovich

We have constructed a chimeric thymidine kinase (TK) minigene, pHe delta 6Ha, which combines the complete coding and 3' noncoding regions of a Chinese hamster TK cDNA with the promoter region and 5' untranslated region of the TK gene of herpes simplex virus type 1. We have transformed rat 4 cells to Tk+ with this gene and analyzed the pattern of TK gene expression in these transformants under various conditions of in vitro cell culture. We find that TK gene expression in these Tk+ transformants is growth phase dependent, responsive to adenovirus 5 infection, and indistinguishable in character under a variety of cell culture conditions from the pattern of TK gene expression in rat 4 cells transformed to Tk+ with the genomic Chinese hamster TK gene clone lambda HaTK.5. We are led to the conclusion that the genetic elements which mediate growth phase-dependent TK gene expression are contained entirely within the sequences of the mature cytoplasmic hamster TK mRNA.


2018 ◽  
Vol 110 (7) ◽  
pp. 1356-1366 ◽  
Author(s):  
Vincenza Barbato ◽  
Roberto Gualtieri ◽  
Teresa Capriglione ◽  
Maria Michela Pallotta ◽  
Sabrina Braun ◽  
...  

Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


Sign in / Sign up

Export Citation Format

Share Document