scholarly journals DsbA of Pseudomonas aeruginosa Is Essential for Multiple Virulence Factors

2003 ◽  
Vol 71 (3) ◽  
pp. 1590-1595 ◽  
Author(s):  
Un-Hwan Ha ◽  
Yanping Wang ◽  
Shouguang Jin

ABSTRACT DsbA is a periplasmic thiol:disulfide oxidoreductase which contributes to the process of protein folding by catalyzing the formation of disulfide bonds. In this study, we demonstrate that the dsbA gene is required for the expression of the type III secretion system under low-calcium inducing conditions, intracellular survival of P. aeruginosa upon infection of HeLa cells, and twitching motility. The diverse phenotypes of the dsbA mutant are likely due to its defect in the folding of proteins that are involved in various biological processes, such as signal sensing, protein secretion, and defense against host clearing. In light of its effect on various virulence factors, DsbA could be an important target for the control of P. aeruginosa infections.

2011 ◽  
Vol 56 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Akihiro Yamazaki ◽  
Jin Li ◽  
Quan Zeng ◽  
Devanshi Khokhani ◽  
William C. Hutchins ◽  
...  

ABSTRACTAntibiotic therapy is the most commonly used strategy to control pathogenic infections; however, it has contributed to the generation of antibiotic-resistant bacteria. To circumvent this emerging problem, we are searching for compounds that target bacterial virulence factors rather than their viability.Pseudomonas aeruginosa, an opportunistic human pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors by which it secretes and translocates T3 effector proteins into human host cells. The fact that this human pathogen also is able to infect several plant species led us to screen a library of phenolic compounds involved in plant defense signaling and their derivatives for novel T3 inhibitors. Promoter activity screening ofexoS, which encodes a T3-secreted toxin, identified two T3 inhibitors and two T3 inducers ofP. aeruginosaPAO1. These compounds alterexoStranscription by affecting the expression levels of the regulatory small RNAs RsmY and RsmZ. These two small RNAs are known to control the activity of carbon storage regulator RsmA, which is responsible for the regulation of the key T3SS regulator ExsA. As RsmY and RsmZ are the only targets directly regulated by GacA, our results suggest that these phenolic compounds affect the expression ofexoSthrough the GacSA-RsmYZ-RsmA-ExsA regulatory pathway.


2008 ◽  
Vol 76 (5) ◽  
pp. 2202-2211 ◽  
Author(s):  
Timothy Casselli ◽  
Tarah Lynch ◽  
Carolyn M. Southward ◽  
Bryan W. Jones ◽  
Rebekah DeVinney

ABSTRACT Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis; however, its virulence mechanisms are not well understood. The identification of type III secreted proteins has provided candidate virulence factors whose functions are still being elucidated. Genotypic strain variability contributes a level of complexity to understanding the role of different virulence factors. The ability of V. parahaemolyticus to inhibit Rho family GTPases and cause cytoskeletal disruption was examined with HeLa cells. After HeLa cells were infected, intracellular Rho activation was inhibited in response to external stimuli. In vitro activation of Rho, Rac, and Cdc42 isolated from infected HeLa cell lysates was also inhibited, indicating that the bacteria were specifically targeting GTPase activation. The inhibition of Rho family GTPase activation was retained for clinical and environmental isolates of V. parahaemolyticus and was dependent on a functional chromosome I type III secretion system (CI-T3SS). GTPase inhibition was independent of hemolytic toxin genotype and the chromasome II (CII)-T3SS. Rho inhibition was accompanied by a shift in the total actin pool to its monomeric form. These phenotypes were abrogated in a mutant strain lacking the CI-T3S effector Vp1686, suggesting that the inhibiting actin polymerization may be a downstream effect of Vp1686-dependent GTPase inhibition. Although Vp1686 has been previously characterized as a potential virulence factor in macrophages, our findings reveal an effect on cultured HeLa cells. The ability to inhibit Rho family GTPases independently of the CII-T3SS and the hemolytic toxins may provide insight into the mechanisms of virulence used by strains lacking these virulence factors.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 424 ◽  
Author(s):  
Yueying Zhang ◽  
Bin Xia ◽  
Mei Li ◽  
Jing Shi ◽  
Yuqing Long ◽  
...  

Toxin-antitoxin (TA) systems play important roles in bacteria persister formation. Increasing evidence demonstrate the roles of TA systems in regulating virulence factors in pathogenic bacteria. The toxin HigB in Pseudomonas aeruginosa contributes to persister formation and regulates the expression of multiple virulence factors and biofilm formation. However, the regulatory mechanism remains elusive. In this study, we explored the HigB mediated regulatory pathways. We demonstrate that HigB decreases the intracellular level of c-di-GMP, which is responsible for the increased expression of the type III secretion system (T3SS) genes and repression of biofilm formation. By analyzing the expression levels of the known c-di-GMP metabolism genes, we find that three c-di-GMP hydrolysis genes are up regulated by HigB, namely PA2133, PA2200 and PA3825. Deletion of the three genes individually or simultaneously diminishes the HigB mediated regulation on the expression of T3SS genes and biofilm formation. Therefore, our results reveal novel functions of HigB in P. aeruginosa.


2021 ◽  
Author(s):  
Sara L.N. Kilmury ◽  
Katherine J. Graham ◽  
Ryan P. Lamers ◽  
Lesley T. MacNeil ◽  
Lori L. Burrows

ABSTRACTType IVa pili (T4aP) are important virulence factors for many bacterial pathogens. Previous studies suggested that the retraction ATPase, PilT, modulates pathogenicity due to its critical role in pilus dynamics and twitching motility. Here we use a Caenorhabditis elegans slow killing model to show that hyperpiliation, not loss of pilus retraction, reduces virulence of Pseudomonas aeruginosa strains PAK and PA14 by interfering with function of the contact-dependent type III secretion system (T3SS). Hyperactivating point mutations in the P. aeruginosa PilSR two-component system that controls transcription of the major pilin gene, pilA, increased levels of surface pili to the same extent as deleting pilT, without impairing twitching motility. These functionally hyperpiliated PilSR mutants had significant defects in pathogenicity that were rescued by deleting pilA or by increasing the length of T3SS needles via deletion of the needle-length regulator, PscP. Hyperpiliated pilT deletion or pilO point mutants showed similar PilA-dependent impairments in virulence, validating the phenotype. Together, our data support a model where a surfeit of pili prevents effective engagement of contact-dependent virulence factors. These findings suggest that the role of T4aP retraction in virulence should be revised.SIGNIFICANCEPseudomonas aeruginosa is a major contributor to hospital-acquired infections and particularly problematic due to its intrinsic resistance to many front-line antibiotics. Strategies to combat this and other important pathogens include development of anti-virulence therapeutics. We show that the pathogenicity of P. aeruginosa is impaired when the amount of type IVa pili (T4aP) expressed on the cell surface increases, independent of the bacteria’s ability to twitch. We propose that having excess T4aP on the cell surface can physically interfere with productive engagement of the contact-dependent type III secretion toxin delivery system. A better understanding of how T4aP modulate interaction of bacteria with target cells will improve the design of therapeutics targeting components involved in regulation of T4aP expression and function, to reduce the clinical burden of P. aeruginosa and other T4aP-expressing bacteria.


2004 ◽  
Vol 72 (3) ◽  
pp. 1677-1684 ◽  
Author(s):  
Roger S. Smith ◽  
Matthew C. Wolfgang ◽  
Stephen Lory

ABSTRACT Infections caused by the opportunistic pathogen Pseudomonas aeruginosa involve the interplay of several bacterial virulence factors. It has recently been established that the delivery of toxic effector proteins by the type III secretion system is an important virulence mechanism in several animal models. Furthermore, the expression of the type III secretion system and its effectors has been correlated with a poor clinical outcome during human infections. A novel cyclic AMP (cAMP) regulatory network that controls the expression of virulence factors, including the type III secretion system, was examined to determine its contribution to P. aeruginosa colonization and dissemination in a mouse pneumonia model. Mutants lacking the two genome-encoded adenylate cyclases, CyaA and CyaB, and the cAMP-dependent regulator Vfr were examined. Based on the enumeration of bacteria in lungs, livers, and spleens, as well as the assessment of mouse lung pathology, mutations in the cyaB and vfr genes resulted in a more significantly attenuated phenotype than mutations in cyaA. Moreover, in this model, expression of the type III secretion system was essential for lung colonization and pathology. Strains with mutations in the exsA gene, which encodes a type III regulatory protein, or pscC, which encodes an essential component of the secretion apparatus, were also significantly attenuated. Finally, we demonstrate that virulence can be restored in an adenylate cyclase mutant by the overexpression of exsA, which specifically restores expression of the type III secretion system in the absence of a functional cAMP-dependent regulatory network.


2008 ◽  
Vol 190 (13) ◽  
pp. 4624-4631 ◽  
Author(s):  
Hideaki Mizusaki ◽  
Akiko Takaya ◽  
Tomoko Yamamoto ◽  
Shin-Ichi Aizawa

ABSTRACT Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lisa Ann Burdette ◽  
Han Teng Wong ◽  
Danielle Tullman-Ercek

Abstract Background Protein secretion in bacteria is an attractive strategy for heterologous protein production because it retains the high titers and tractability of bacterial hosts while simplifying downstream processing. Traditional intracellular production strategies require cell lysis and separation of the protein product from the chemically similar cellular contents, often a multi-step process that can include an expensive refolding step. The type III secretion system of Salmonella enterica Typhimurium transports proteins from the cytoplasm to the extracellular environment in a single step and is thus a promising solution for protein secretion in bacteria. Product titer is sensitive to extracellular environmental conditions, however, and T3SS regulation is integrated with essential cellular functions. Instead of attempting to untangle a complex web of regulatory input, we took an “outside-in” approach to elucidate the effect of growth medium components on secretion titer. Results We dissected the individual and combined effects of carbon sources, buffers, and salts in a rich nutrient base on secretion titer. Carbon sources alone decreased secretion titer, secretion titer increased with salt concentration, and the combination of a carbon source, buffer, and high salt concentration had a synergistic effect on secretion titer. Transcriptional activity measured by flow cytometry showed that medium composition affected secretion system activity, and prolonged secretion system activation correlated strongly with increased secretion titer. We found that an optimal combination of glycerol, phosphate, and sodium chloride provided at least a fourfold increase in secretion titer for a variety of proteins. Further, the increase in secretion titer provided by the optimized medium was additive with strain enhancements. Conclusions We leveraged the sensitivity of the type III secretion system to the extracellular environment to increase heterologous protein secretion titer. Our results suggest that maximizing secretion titer via the type III secretion system is not as simple as maximizing secreted protein expression—one must also optimize secretion system activity. This work advances the type III secretion system as a platform for heterologous protein secretion in bacteria and will form a basis for future engineering efforts.


Sign in / Sign up

Export Citation Format

Share Document