scholarly journals Toll-Like Receptor 2 Modulates the Proinflammatory Milieu in Staphylococcus aureus-Induced Brain Abscess

2005 ◽  
Vol 73 (11) ◽  
pp. 7428-7435 ◽  
Author(s):  
Tammy Kielian ◽  
Anessa Haney ◽  
Patrick M. Mayes ◽  
Sarita Garg ◽  
Nilufer Esen

ABSTRACT Toll-like receptor 2 (TLR2) is a pattern recognition receptor (PRR) that plays an important role in innate immune recognition of conserved structural motifs on a wide array of pathogens, including Staphylococcus aureus. To ascertain the functional significance of TLR2 in the context of central nervous system (CNS) parenchymal infection, we evaluated the pathogenesis of S. aureus-induced experimental brain abscess in TLR2 knockout (KO) and wild-type (WT) mice. The expression of several proinflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor alpha, and macrophage inflammatory protein-2, was significantly attenuated in brain abscesses of TLR2 KO mice compared to WT mice during the acute phase of infection. Conversely, interleukin-17 (IL-17), a cytokine produced by activated and memory T cells, was significantly elevated in lesions of TLR2 KO mice, suggesting an association between innate and adaptive immunity in brain abscess. Despite these differences, brain abscess severity in TLR2 KO and WT animals was similar, with comparable mortality rates, bacterial titers, and blood-brain barrier permeability, implying a role for alternative PRRs. Expression of the phagocytic PRRs macrophage scavenger receptor type AI/AII and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was increased in brain abscesses of both TLR2 KO and WT mice compared to uninfected animals. However, LOX-1 induction in brain abscesses of TLR2 KO mice was significantly attenuated compared to WT animals, revealing that the TLR2-dependent signal(s) influence LOX-1 expression. Collectively, these findings reveal the complex nature of gram-positive bacterial recognition in the CNS which occurs, in part, through engagement of TLR2 and highlight the importance of receptor redundancy for S. aureus detection in the CNS.

2014 ◽  
Vol 82 (11) ◽  
pp. 4681-4688 ◽  
Author(s):  
Holger Schäffler ◽  
Dogan Doruk Demircioglu ◽  
Daniel Kühner ◽  
Sarah Menz ◽  
Annika Bender ◽  
...  

ABSTRACTMutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) play an important role in the pathogenesis of Crohn's disease. NOD2 is an intracellular pattern recognition receptor (PRR) that senses bacterial peptidoglycan (PGN) structures, e.g., muramyl dipeptide (MDP). Here we focused on the effect of more-cross-linked, polymeric PGN fragments (PGNpol) in the activation of the innate immune system. In this study, the effect of combined NOD2 and Toll-like receptor 2 (TLR2) stimulation was examined compared to single stimulation of the NOD2 receptor alone. PGNpol species derived from a lipoprotein-containingStaphylococcus aureusstrain (SA113) and a lipoprotein-deficient strain (SA113 Δlgt) were isolated. While PGNpol constitutes a combined NOD2 and TLR2 ligand, lipoprotein-deficient PGNpolΔlgtleads to activation of the immune system only via the NOD2 receptor. Murine bone marrow-derived dendritic cells (BMDCs), J774 cells, and Mono Mac 6 (MM6) cells were stimulated with these ligands. Cytokines (interleukin-6 [IL-6], IL-12p40, and tumor necrosis factor alpha [TNF-α]) as well as DC activation and maturation parameters were measured. Stimulation with PGNpolΔlgtdid not lead to enhanced cytokine secretion or DC activation and maturation. However, stimulation with PGNpol led to strong cytokine secretion and subsequent DC maturation. These results were confirmed in MM6 and J774 cells. We showed that the NOD2-mediated activation of DCs with PGNpol was dependent on TLR2 costimulation. Therefore, signaling via both receptors leads to a more potent activation of the immune system than that with stimulation via each receptor alone.


2012 ◽  
Vol 80 (6) ◽  
pp. 2076-2088 ◽  
Author(s):  
Travis Kochan ◽  
Anuj Singla ◽  
Joaquin Tosi ◽  
Ashok Kumar

ABSTRACTStaphylococcus aureusis a leading cause of severe endophthalmitis, which often results in vision loss in some patients. Previously, we showed that Toll-like receptor 2 (TLR2) ligand pretreatment prevented the development of staphylococcal endophthalmitis in mice and suggested that microglia might be involved in this protective effect (Kumar A, Singh CN, Glybina IV, Mahmoud TH, Yu FS. J. Infect. Dis. 201:255–263, 2010). The aim of the present study was to understand how microglial innate response is modulated by TLR2 ligand pretreatment. Here, we demonstrate thatS. aureusinfection increased the CD11b+CD45+microglial/macrophage population in the C57BL/6 mouse retina. Using cultured primary retinal microglia and a murine microglial cell line (BV-2), we found that these cells express TLR2 and that its expression is increased upon stimulation with bacteria or an exclusive TLR2 ligand, Pam3Cys. Furthermore, challenge of primary retinal microglia withS. aureusand its cell wall components peptidoglycan (PGN) and lipoteichoic acid (LTA) induced the secretion of proinflammatory mediators (tumor necrosis factor alpha [TNF-α] and MIP-2). This innate response was attenuated by a function-blocking anti-TLR2 antibody or by small interfering RNA (siRNA) knockdown of TLR2. In order to assess the modulation of the innate response, microglia were pretreated with a low dose (0.1 or 1 μg/ml) of Pam3Cys and then challenged with liveS. aureus. Our data showed thatS. aureus-induced production of proinflammatory mediators is dramatically reduced in pretreated microglia. Importantly, microglia pretreated with the TLR2 agonist phagocytosed significantly more bacteria than unstimulated cells. Together, our data suggest that TLR2 plays an important role in retinal microglial innate response toS. aureus, and its sensitization inhibits inflammatory response while enhancing phagocytic activity.


2005 ◽  
Vol 73 (8) ◽  
pp. 5212-5216 ◽  
Author(s):  
Roman Dziarski ◽  
Dipika Gupta

ABSTRACT Since the ability of peptidoglycan (PGN) to activate Toll-like receptor 2 (TLR2) was recently questioned, we reevaluated activation of TLR2 by PGN. Polymeric soluble or insoluble Staphylococcus aureus PGN, repurified by sodium dodecyl sulfate or phenol extraction, activated TLR2 at 0.1 to 1 or 10 μg/ml, respectively, and induced tumor necrosis factor alpha production. The TLR2 activation by PGN, but not by lipoteichoic acid, was abolished by muramidase digestion. We conclude that polymeric S. aureus PGN is a TLR2 activator.


2010 ◽  
Vol 78 (10) ◽  
pp. 4243-4250 ◽  
Author(s):  
P. Müller ◽  
M. Müller-Anstett ◽  
J. Wagener ◽  
Q. Gao ◽  
S. Kaesler ◽  
...  

ABSTRACT SitC is one of the predominant lipoproteins in Staphylococcus aureus. Recently, SitC was shown to be capable of stimulating Toll-like receptor 2 (TLR2), but the mechanism of TLR2 activation by SitC has not been analyzed in detail so far. In this study, we purified C-terminally His-tagged SitC (SitC-His) from Staphylococcus aureus. SitC-His induced interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) release in human monocytes and also NF-κB activation in TLR2-transfected HEK293 cells, indicating TLR2-specific activation. SitC not only induced a TLR2-dependent release of IL-6 in primary murine keratinocytes (MKs) but also induced intracellular accumulation of TLR2, which was time and concentration dependent. Cy2-labeled SitC-His colocalized specifically with TLR2 in MKs and was also internalized in TLR2 knockout MKs, suggesting a TLR2-independent uptake. Neither activation nor colocalization of SitC-His was observed with TLR4 or Nod2. The results show that the native lipoprotein SitC-His specifically colocalizes with TLR2, is internalized by host cells, induces proinflammatory cytokines, and triggers intracellular accumulation of TLR2.


2008 ◽  
Vol 76 (10) ◽  
pp. 4489-4497 ◽  
Author(s):  
Claudio M. Rocha-de-Souza ◽  
Beata Berent-Maoz ◽  
David Mankuta ◽  
Allon E. Moses ◽  
Francesca Levi-Schaffer

ABSTRACT The ability of Staphylococcus aureus to invade and survive within host cells is believed to contribute to its propensity to cause persistent and metastatic infections. In addition, S. aureus infections often are associated with atopic diseases such as dermatitis, rhinitis, and asthma. Mast cells, the key cells of allergic diseases, have a pivotal role in innate immunity and have the capacity of phagocytosis, and they can destroy some pathogenic bacteria. However, little is known about the ability of some other bacteria to survive and overcome mast cell phagocytosis. Therefore, we were interested in evaluating the interplay between mast cells and S. aureus. In this study, we show that human cord blood-derived mast cells (CBMC) can be infected by pathogenic S. aureus. S. aureus displayed a high adherence to mast cells as well as invasive and survival abilities within them. However, when infections were performed in the presence of cytochalasin D or when CBMC were preincubated with anti-Toll-like receptor 2 (TLR2) or anti-CD48 antibodies, the invasiveness and the inflammatory response were abrogated, respectively. Furthermore, we observed an increase of TLR2 and CD48 molecules on CBMC after S. aureus infection. The infection of CBMC with S. aureus also caused the release of tumor necrosis factor alpha (TNF-α) and interleukin-8 (IL-8). Both live and killed S. aureus organisms were found to trigger TNF-α and IL-8 release by CBMC in a time-dependent manner. Cumulatively, these findings suggest that S. aureus internalizes and survives in mast cells. This may play an important role in infections and in atopic diseases associated with S. aureus.


2018 ◽  
Vol 86 (10) ◽  
Author(s):  
Supriya Shukla ◽  
Edward T. Richardson ◽  
Michael G. Drage ◽  
W. Henry Boom ◽  
Clifford V. Harding

ABSTRACTMycobacterium tuberculosiscauses persistent infection due to its ability to evade host immune responses.M. tuberculosisinduces Toll-like receptor 2 (TLR2) signaling, which influences immune responses toM. tuberculosis. TLR2 agonists expressed byM. tuberculosisinclude lipoproteins (e.g., LprG), the glycolipid phosphatidylinositol mannoside 6 (PIM6), and the lipoglycan lipomannan (LM). AnotherM. tuberculosislipoglycan, mannose-capped lipoarabinomannan (ManLAM), lacks TLR2 agonist activity. In contrast, PILAM, fromMycobacterum smegmatis, does have TLR2 agonist activity. Our understanding of howM. tuberculosislipoproteins and lipoglycans interact with TLR2 is limited, and binding of these molecules to TLR2 has not been measured directly. Here, we directly measuredM. tuberculosislipoprotein and lipoglycan binding to TLR2 and its partner receptor, TLR1. LprG, LAM, and LM were all found to bind to TLR2 in the absence of TLR1, but not to TLR1 in the absence of TLR2. Trimolecular interactions were revealed by binding of TLR2-LprG or TLR2-PIM6 complexes to TLR1, whereas binding of TLR2 to TLR1 was not detected in the absence of the lipoprotein or glycolipid. ManLAM exhibited low affinity for TLR2 in comparison to PILAM, LM, and LprG, which correlated with reduced ability of ManLAM to induce TLR2-mediated extracellular-signal-regulated kinase (ERK) activation and tumor necrosis factor alpha (TNF-α) secretion in macrophages. We provide the first direct affinity measurement and kinetic analysis ofM. tuberculosislipoprotein and lipoglycan binding to TLR2. Our results demonstrate that binding affinity correlates with the functional ability of agonists to induce TLR2 signaling.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Arnaud Kengmo Tchoupa ◽  
Andreas Peschel

ABSTRACT Staphylococcus aureus is a major pathogen, which colonizes one in three otherwise healthy humans. This significant spread of S. aureus is largely due to its ability to circumvent innate immune responses, including antimicrobial fatty acids (AFAs) on the skin and in nasal secretions. In response to AFAs, S. aureus swiftly induces resistance mechanisms, which have yet to be completely elucidated. Here, we identify membrane vesicle (MV) release as a resistance strategy used by S. aureus to sequester host-specific AFAs. MVs protect S. aureus against a wide array of AFAs. Strikingly, beside MV production, S. aureus modulates MV composition upon exposure to AFAs. MVs purified from bacteria grown in the presence of linoleic acid display a distinct protein content and are enriched in lipoproteins, which strongly activate Toll-like receptor 2 (TLR2). Cumulatively, our findings reveal the protective capacities of MVs against AFAs, which are counteracted by an increased TLR2-mediated innate immune response. IMPORTANCE The nares of one in three humans are colonized by Staphylococcus aureus. In these environments, and arguably on all mucosal surfaces, bacteria encounter fatty acids with antimicrobial properties. Our study uncovers that S. aureus releases membrane vesicles (MVs) that act as decoys to protect the bacterium against antimicrobial fatty acids (AFAs). The AFA-neutralizing effects of MVs were neither strain specific nor restricted to one particular AFA. Hence, MVs may represent “public goods” playing an overlooked role in shaping bacterial communities in AFA-rich environments such as the skin and nose. Intriguingly, in addition to MV biogenesis, S. aureus modulates MV composition in response to exposure to AFAs, including an increased release of lipoproteins. These MVs strongly stimulate the innate immunity via Toll-like receptor 2 (TLR2). TLR2-mediated inflammation, which helps to fight infections, may exacerbate inflammatory disorders like atopic dermatitis. Our study highlights intricate immune responses preventing infections from colonizing bacteria.


2009 ◽  
Vol 77 (7) ◽  
pp. 3100-3108 ◽  
Author(s):  
Fengchan Han ◽  
Heping Yu ◽  
Cong Tian ◽  
Shengli Li ◽  
Michael R. Jacobs ◽  
...  

ABSTRACT Streptococcus pneumoniae is the most common pathogen associated with otitis media. To examine the role of Toll-like receptor 2 (TLR2) in host defense against Streptococcus pneumoniae infection in the middle ear, wild-type (WT; C57BL/6) and TLR2-deficient (TLR2−/−) mice were inoculated with Streptococcus pneumoniae (1 × 106 CFU) through the tympanic membrane. Nineteen of 37 TLR2−/− mice showed bacteremia and died within 3 days after the challenge, compared to only 4 of 32 WT mice that died. Of those that survived, more severe hearing loss in the TLR2−/− mice than in the WT mice was indicated by an elevation in auditory-evoked brain stem response thresholds at 3 or 7 days postinoculation. The histological pathology was characterized by effusion and tissue damage in the middle ear, and in the TLR2−/− mice, the outcome of infection became more severe at 7 days. At both 3 and 7 days postchallenge, the TLR2−/− mice had higher blood bacterial titers than the WT mice (P < 0.05), and typical bacteria were identified in the effusion from both ears of both mouse groups by acridine orange staining. Moreover, by 3 days postchallenge, the mRNA accumulation levels of NF-κB, tumor necrosis factor alpha, interleukin 1β, MIP1α, Muc5ac, and Muc5b were significantly lower in the ears of TLR2−/− mice than in WT mice. In summary, TLR2−/− mice may produce relatively low levels of proinflammatory cytokines following pneumococcal challenge, thus hindering the clearance of bacteria from the middle ear and leading to sepsis and a high mortality rate. This study provides evidence that TLR2 is important in the molecular pathogenesis and host response to otitis media.


2005 ◽  
Vol 73 (3) ◽  
pp. 1847-1851 ◽  
Author(s):  
Bruno González-Zorn ◽  
Jose P. M. Senna ◽  
Laurence Fiette ◽  
Spencer Shorte ◽  
Aurélie Testard ◽  
...  

ABSTRACT Nasal carriage is a major risk factor for Staphylococcus aureus infection, especially for methicillin-resistant strains (MRSA). Using a mouse model of nasal carriage, we have compared several S. aureus strains and demonstrated increased colonization levels by MRSA in cystic fibrosis transmembrane conductance regulator-deficient mice and Toll-like receptor 2 (TLR2)-deficient mice but not TLR4-deficient mice.


Sign in / Sign up

Export Citation Format

Share Document