scholarly journals Glycerol-Mediated Repression of Glucose Metabolism and Glycerol Kinase as the Sole Route of Glycerol Catabolism in the Haloarchaeon Haloferax volcanii

2009 ◽  
Vol 191 (13) ◽  
pp. 4307-4315 ◽  
Author(s):  
Katherine E. Sherwood ◽  
David José Cano ◽  
Julie A. Maupin-Furlow

ABSTRACT Although glycerol is the primary carbon source available to halophilic heterotrophic communities, little is known regarding haloarchaeal glycerol metabolism. In this study, a gene encoding a glycerol kinase homolog (glpK; HVO_1541) was deleted from the genome of the haloarchaeon Haloferax volcanii by a markerless knockout strategy. The glpK mutant, KS4, readily grew on yeast extract-peptone complex medium and glucose minimal medium but was incapable of growth on glycerol. Glycerol kinase activity was dependent on the glpK gene and readily detected in cells grown on glucose and/or glycerol, with the activity level higher in medium supplemented with glycerol (with or without glucose) than in medium with glucose alone. An analysis of carbon utilization revealed that glycerol suppressed the metabolism of glucose in both the parent H26 and glpK mutant strains, with catabolite repression more pronounced in the glycerol kinase mutant. Transcripts specific for glpK and an upstream gene, gpdA, encoding a homolog of glycerol-3-phosphate dehydrogenase subunit A, were upregulated (8- and 74-fold, respectively) in the presence of glycerol and glucose compared to those in the presence of glucose alone. Furthermore, glpK was transcriptionally linked to the gpdC gene of the putative glycerol-3-phosphate dehydrogenase operon (gpdABC), based on the findings of reverse transcriptase PCR analysis. The results presented here provide genetic and biochemical evidence that glycerol metabolism proceeds through a glycerol kinase encoded by glpK and suggest that a glycerol-3-phosphate dehydrogenase encoded by the upstream gpdABC operon is also involved in this pathway. Furthermore, our findings reveal a unique example of glycerol-induced repression of glucose metabolism in H. volcanii.

1970 ◽  
Vol 118 (3) ◽  
pp. 531-536 ◽  
Author(s):  
R. G. Vernon ◽  
D. G. Walker

1. The possible role of glycerol as a precursor in neonatal gluconeogenesis in the rat was investigated by recording the activities of glycerol kinase and l-glycerol 3-phosphate dehydrogenase in the liver, kidney and other tissues around birth and during the neonatal period. 2. Blood glycerol concentrations in the neonatal rat are high. 3. There is a marked increase after birth in the ability of both liver and kidney slices to convert glycerol into glucose plus glycogen that correlates with the increase in glycerol kinase activity. 4. High hepatic and renal l-glycerol 3-phosphate dehydrogenase activities are also found in the neonatal period. 5. The marked capacity for neonatal gluconeogenesis from glycerol thus demonstrated and the role of glycerol kinase in its control are discussed.


2019 ◽  
Vol 201 (24) ◽  
Author(s):  
Hyun-Ju Bong ◽  
Eon-Min Ko ◽  
Su-Yeon Song ◽  
In-Jeong Ko ◽  
Jeong-Il Oh

ABSTRACT The glpD (MSMEG_6761) gene encoding glycerol-3-phosphate dehydrogenase was shown to be crucial for M. smegmatis to utilize glycerol as the sole carbon source. The glpD gene likely forms the glpFKD operon together with glpF and glpK, encoding a glycerol facilitator and glycerol kinase, respectively. The gylR (MSMEG_6757) gene, whose product belongs to the IclR family of transcriptional regulators, was identified 182 bp upstream of glpF. It was demonstrated that GylR serves as a transcriptional activator and is involved in the induction of glpFKD expression in the presence of glycerol. Three GylR-binding sites with the consensus sequence (GKTCGRC-N3-GYCGAMC) were identified in the upstream region of glpF by DNase I footprinting analysis. The presence of glycerol-3-phosphate was shown to decrease the binding affinity of GylR to the glpF upstream region with changes in the quaternary structure of GylR from tetramer to dimer. Besides GylR, cAMP receptor protein (Crp) and an alternative sigma factor, SigF, are also implicated in the regulation of glpFKD expression. Crp functions as a repressor, while SigF induces expression of glpFKD under energy-limiting conditions. In conclusion, we suggest here that the glpFKD operon is under the tripartite control of GylR, SigF, and Crp, which enables M. smegmatis to integrate the availability of glycerol, cellular energy state, and cellular levels of cAMP to exquisitely control expression of the glpFKD operon involved in glycerol metabolism. IMPORTANCE Using genetic approaches, we first revealed that glycerol is catabolized through the glycolytic pathway after conversion to dihydroxyacetone phosphate in two sequential reactions catalyzed by glycerol kinase (GlpK) and flavin adenine dinucleotide (FAD)-containing glycerol-3-phosphate dehydrogenase (GlpD) in M. smegmatis. Our study also revealed that in addition to the GylR transcriptional activator that mediates the induction of the glpFKD operon by glycerol, the operon is regulated by SigF and Crp, which reflect the cellular energy state and cAMP level, respectively.


1968 ◽  
Vol 46 (9) ◽  
pp. 1107-1114 ◽  
Author(s):  
Jean Himms-Hagen

The endogenous rate of glycerol production in rabbits was measured by several techniques: constant infusion of 1,3-14C-glycerol or 2-3H-glycerol or unlabeled glycerol; single injection of 1,3-14C-glycerol or 2-3H-glycerol or unlabeled glycerol. The rate was 5.5–11.6 μmoles/kg per minute (9 rabbits). The mean fractional turnover rate was 0.0585 ± 0.0052. During infusion of noradrenaline together with 3H-glycerol, the fractional turnover rate was no different from that in the absence of noradrenaline. The maximum utilization rate of glycerol was 28.1 ± 1.40 μmoles/kg per minute. The glycerol space was 58.1% of body weight. The relationship of glycerol concentration to rate of glycerol utilization in the intact rabbit suggests the existence of an enzyme with a KM for glycerol of 0.33 × 10−3 M; the glycerol kinase of rabbit liver was found to have a KM for glycerol of 0.29 × 10−3 M. This enzyme could account for the disappearance of glycerol in the intact animal except that its Vmax is only 4% of that expected. Possible reasons for this are discussed. A glycerol dehydrogenase with a Vmax similar to that of the glycerol kinase also exists in rabbit liver; its KM for glycerol is so high (0.5 M) that it is unlikely to play a significant role in glycerol metabolism in the normal rabbit.


2005 ◽  
Vol 71 (12) ◽  
pp. 8284-8291 ◽  
Author(s):  
Huseyin Basim ◽  
Gerald V. Minsavage ◽  
Robert E. Stall ◽  
Jaw-Fen Wang ◽  
Savita Shanker ◽  
...  

ABSTRACT We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


2009 ◽  
Vol 78 (3) ◽  
pp. 1109-1122 ◽  
Author(s):  
Shuming Zhao ◽  
Grisselle E. Montanez ◽  
Pradeep Kumar ◽  
Soma Sannigrahi ◽  
Yih-Ling Tzeng

ABSTRACT Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.


2002 ◽  
Vol 46 (5) ◽  
pp. 1516-1521 ◽  
Author(s):  
Takashi Ida ◽  
Ryoichi Okamoto ◽  
Masato Nonoyama ◽  
Kazuhiko Irinoda ◽  
Mizuyo Kurazono ◽  
...  

ABSTRACT We encountered three clinical isolates of methicillin-resistant Staphylococcus aureus which were susceptible to netilmicin and arbekacin in the absence of β-lactam antibiotics but which were resistant to them in the presence of β-lactam antibiotics. One of these strains, KU5801, was used to further investigate the antagonism between aminoglycosides and β-lactam antibiotics. β-Lactam antibiotics induced bacterial synthesis of aminoglycoside-6′-N-acetyltransferase and 2"-O-phosphotransferase [AAC(6′)-APH(2")] in association with decreased antimicrobial activities of aminoglycosides. A 14.4-kb EcoRI fragment that included the genes that control for β-lactam-inducible aminoglycoside resistance was cloned from a 31-kb conjugative plasmid present in KU5801. Restriction fragment mapping and PCR analysis suggested that a Tn4001-like element containing a gene encoding AAC(6′)-APH(2") was located downstream from a truncated blaZ gene. The DNA sequence between blaR1 and a Tn4001-like element was determined. The Tn4001-IS257 hybrid structure was cointegrated into the blaZ gene, and the typical sequences for the termination of transcription were not found between these regions. We deduced that antagonism of aminoglycosides by β-lactam antibiotics in isolate KU5801 involved transcription of the aac(6′)-Ie-aph(2")-Ia gene under the influence of the system regulating penicillinase production.


2006 ◽  
Vol 188 (8) ◽  
pp. 3088-3098 ◽  
Author(s):  
Balakrishnan Venkatesh ◽  
Lavanya Babujee ◽  
Hui Liu ◽  
Pete Hedley ◽  
Takashi Fujikawa ◽  
...  

ABSTRACT The PhoPQ two-component system regulates virulence factors in Erwinia chrysanthemi, a pectinolytic enterobacterium that causes soft rot in several plant species. We characterized the effect of a mutation in phoQ, the gene encoding the sensor kinase PhoQ of the PhoPQ two-component regulatory system, on the global transcriptional profile of E. chrysanthemi using cDNA microarrays and further confirmed our results by quantitative reverse transcription-PCR analysis. Our results indicate that a mutation in phoQ affects transcription of at least 40 genes, even in the absence of inducing conditions. Enhanced expression of several genes involved in iron metabolism was observed in the mutant, including that of the acs operon that is involved in achromobactin biosynthesis and transport. This siderophore is required for full virulence of E. chrysanthemi, and its expression is governed by the global repressor protein Fur. Changes in gene expression were also observed for membrane transporters, stress-related genes, toxins, and transcriptional regulators. Our results indicate that the PhoPQ system governs the expression of several additional virulence factors and may also be involved in interactions with other regulatory systems.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-322780
Author(s):  
Jie Hong ◽  
Fangfang Guo ◽  
Shi-Yuan Lu ◽  
Chaoqin Shen ◽  
Dan Ma ◽  
...  

ObjectiveMicrobiota disorder promotes chronic inflammation and carcinogenesis. High glycolysis is associated with poor prognosis in patients with colorectal cancer (CRC). However, the potential correlation between the gut microbiota and glucose metabolism is unknown in CRC.Design18F-FDG (18F-fluorodeoxyglucose) PET (positron emission tomography)/CT image scanning data and microbiota PCR analysis were performed to measure the correlation between metabolic alterations and microbiota disorder in 33 patients with CRC. Multiple colorectal cancer models, metabolic analysis and Seahorse assay were established to assess the role of long non-coding RNA (lncRNA) enolase1-intronic transcript 1 (ENO1-IT1) in Fusobacterium (F.) nucleatum-induced glucose metabolism and colorectal carcinogenesis. RNA immunoprecipitation and chromatin immunoprecipitation sequencing were conducted to identify potential targets of lncRNA ENO1-IT1.ResultsWe have found F. nucleatum abundance correlated with high glucose metabolism in patients with CRC. Furthermore, F. nucleatum supported carcinogenesis via increasing CRC cell glucose metabolism. Mechanistically, F. nucleatum activated lncRNA ENO1-IT1 transcription via upregulating the binding efficiency of transcription factor SP1 to the promoter region of lncRNA ENO1-IT1. Elevated ENO1-IT behaved as a guider modular for KAT7 histone acetyltransferase, specifying the histone modification pattern on its target genes, including ENO1, and consequently altering CRC biological function.ConclusionF. nucleatum and glucose metabolism are mechanistically, biologically and clinically connected to CRC. Targeting ENO1 pathway may be meaningful in treating patients with CRC with elevated F. nucleatum.


2019 ◽  
Vol 33 (6) ◽  
pp. 6736-6747 ◽  
Author(s):  
Lili Miao ◽  
Yongsheng Yang ◽  
Yue Liu ◽  
Lili Lai ◽  
Lei Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document