scholarly journals Flagellar Stators Activate a Diguanylate Cyclase To Inhibit Flagellar Stators

2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Daniel B. Kearns

ABSTRACT The bacterial secondary metabolite cyclic di-GMP is a widespread, cytoplasmic signal that promotes a physiological transition in which motility is inhibited and biofilm formation is activated. A paper published in this issue (A. E. Baker, S. S. Webster, A. Diepold, S. L. Kuchma, E. Bordeleau, et al., J Bacteriol 201:e00741-18, 2019, https://doi.org/10.1128/JB.00741-18) makes an important connection between cyclic di-GMP and flagellar components. They show that stator units, which normally interact with the flagellum to power rotation, can alternatively interact with and activate an enzyme that synthesizes cyclic di-GMP in Pseudomonas aeruginosa. Moreover, the same stator units are also the target of cyclic-di-GMP-dependent inhibition such that the more the stators are inhibited, the more cyclic di-GMP is made. The resulting positive-feedback loop not only inhibits motility but also may initiate and stabilize biofilm formation.

mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Judith H. Merritt ◽  
Dae-Gon Ha ◽  
Kimberly N. Cowles ◽  
Wenyun Lu ◽  
Diana K. Morales ◽  
...  

ABSTRACT The signaling nucleotide cyclic diguanylate (c-di-GMP) regulates the transition between motile and sessile growth in a wide range of bacteria. Understanding how microbes control c-di-GMP metabolism to activate specific pathways is complicated by the apparent multifold redundancy of enzymes that synthesize and degrade this dinucleotide, and several models have been proposed to explain how bacteria coordinate the actions of these many enzymes. Here we report the identification of a diguanylate cyclase (DGC), RoeA, of Pseudomonas aeruginosa that promotes the production of extracellular polysaccharide (EPS) and contributes to biofilm formation, that is, the transition from planktonic to surface-dwelling cells. Our studies reveal that RoeA and the previously described DGC SadC make distinct contributions to biofilm formation, controlling polysaccharide production and flagellar motility, respectively. Measurement of total cellular levels of c-di-GMP in ∆roeA and ∆sadC mutants in two different genetic backgrounds revealed no correlation between levels of c-di-GMP and the observed phenotypic output with regard to swarming motility and EPS production. Our data strongly argue against a model wherein changes in total levels of c-di-GMP can account for the specific surface-related phenotypes of P. aeruginosa. IMPORTANCE A critical question in the study of cyclic diguanylate (c-di-GMP) signaling is how the bacterial cell integrates contributions of multiple c-di-GMP-metabolizing enzymes to mediate its cognate functional outputs. One leading model suggests that the effects of c-di-GMP must, in part, be localized subcellularly. The data presented here show that the phenotypes controlled by two different diguanylate cyclase (DGC) enzymes have discrete outputs despite the same total level of c-di-GMP. These data support and extend the model in which localized c-di-GMP signaling likely contributes to coordination of the action of the multiple proteins involved in the synthesis, degradation, and/or binding of this critical signal.


2005 ◽  
Vol 2 (5) ◽  
pp. 589-595 ◽  
Author(s):  
Kotaro Jimbo ◽  
Jin Soo Park ◽  
Kimiaki Yokosuka ◽  
Kimiaki Sato ◽  
Kensei Nagata

Object. Interleukin-1β (IL-1β) induces neurological symptoms in intervertebral disc herniation (IDH). Recently, the existence of a positive feedback loop of IL-1β, which encourages an inflammatory reaction or degeneration in the cells of tendon, has been reported. The authors hypothesized that there is a positive feedback loop of IL-1β in the cells of IDH. Methods. Eight human intervertebral disc specimens were harvested during spinal surgery for lumbar disc herniation. The cells were stimulated in serum-free medium with or without exogenous IL-1β. The messenger RNA (mRNA) was extracted for reverse-transcription polymerase chain reaction (PCR) and real-time PCR to quantify the mRNA of endogenous IL-1β, IL-6, cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs). The cells were then stimulated in serum-free medium with or without exogenous IL-1β, and then exogenous IL-1β was removed. After 2, 4, and 6 days, the medium was collected, and enzyme-linked immunosorbent assay was used to measure the protein concentration of endogenous IL-1β. The mRNA expressions of endogenous IL-1β, IL-6, COX-2, and MMPs were increased significantly depending on the concentration of exogenous IL-1β. The protein concentration of endogenous IL-1β was increased over time. Conclusions. There was a positive feedback loop of IL-1β in the cells of IDH. Furthermore, the productions of IL-6, COX-2, MMP-1, and MMP-3 were upregulated as a result of the increasing concentration of IL-1β in a positive feedback loop of IL-1β. The authors concluded that this positive feedback loop of IL-1β upregulated the production of mediators and thus can cause cessation of symptoms in IDH.


2018 ◽  
Author(s):  
Amy E. Baker ◽  
Shanice S. Webster ◽  
Andreas Diepold ◽  
Sherry L. Kuchma ◽  
Eric Bordeleau ◽  
...  

AbstractFlagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here we show that just as c-di-GMP can influence the stators, stators can impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production in conditions not permissive to motility. This regulation implies a positive feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help define the bidirectional interactions between c-di-GMP and the motility machinery.Importance.The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a non-motile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.


2021 ◽  
Author(s):  
Thomas Guest ◽  
James Haycocks ◽  
Gemma Warren ◽  
David Grainger

Many bacteria use cyclic dimeric guanosine monophosphate (c-di-GMP) to control changes in lifestyle. The molecule, synthesised by proteins having diguanylate cyclase activity, is often a signal to transition from motile to sedentary behaviour. In Vibrio cholerae, c-di-GMP can exert its effects via the transcription factors VpsT and VpsR. Together, these proteins activate genes needed for V. cholerae to form biofilms. In this work, we have mapped the genome-wide distribution of VpsT in a search for further regulatory roles. We show that VpsT binds 23 loci and recognises a degenerate DNA palindrome having the consensus 5' W-5R-4[CG]-3Y-2W-1W+1R+2[GC]+3Y+4W+5-3'. Most genes targeted by VpsT encode functions related to motility, biofilm formation, or c-di-GMP metabolism. Most notably, VpsT activates expression of the vpvABC operon that encodes a diguanylate cyclase. This creates a positive feedback loop needed to maintain intracellular levels of c-di-GMP. Mutation of the key VpsT binding site, upstream of vpvABC, severs the loop and c-di-GMP levels fall accordingly. Hence, as well as relaying the c-di-GMP signal, VpsT impacts c-di-GMP homeostasis.


2016 ◽  
Vol 37 (3) ◽  
pp. 310-324 ◽  
Author(s):  
Deanna de Zilwa

Purpose – Exploring a new conceptual framework for authentic followership (AF) comprised of three components: individual, dyadic and organisational. The purpose of this paper is to explain how the components of AF interact as a positive, non-linear feedback loop. It presents three propositions of positive outcomes arising from AF. First, AF builds follower’s strengths and capacities. Second, AF strengthens dyadic relationships between followers and leaders. Third, AF deepens and strengthens positive organisational culture thereby improving organisational performance. It discusses the practical significance of these propositions for followers, leaders and firms. Design/methodology/approach – The paper provides an overview of AF. Then three propositions of positive outcomes arising from AF are presented. It identifies how these propositions could benefit followers, leaders and firms. In conclusion, it offers suggestions for future research directions and notes some limitations of this work. Findings – The key finding of this paper is that AF could potentially strengthen the capacities and performance of followers, leaders and organisations if the propositions presented in this work are correct – if the three components of AF interact with each other as a positive feedback loop strengthening and reinforcing each component of AF. To establish the validity of the AF model and the three propositions the paper suggests that investigations in different empirical settings are undertaken: SME’s and multinational corporations, in different countries under different market conditions, with followers and leaders of different gender, age, education level, roles and tenure of employment. Originality/value – The paper’s core contention that the components of AF interact as a positive feedback loop has significant practical implications – beneficial outcomes for followers, leaders and firms. P1 explains how AF enables followers to gain confidence, maturity and create solid foundations from which to thrive and flourish. P2 explains how dyadic relationships between followers and leaders could be strengthened, deepening trust and respect between each party, thereby enhancing leadership effectiveness. P3 explains how the dynamic processes of AF can strengthen and deepen positive organisational culture and enhance organisational performance.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Amy E. Baker ◽  
Shanice S. Webster ◽  
Andreas Diepold ◽  
Sherry L. Kuchma ◽  
Eric Bordeleau ◽  
...  

ABSTRACT Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. c-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here, we show that while c-di-GMP can influence stator localization, stators can in turn impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production under conditions not permissive to motility. This regulation implies a positive-feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help to define the bidirectional interactions between c-di-GMP and the flagellar machinery. IMPORTANCE The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a nonmotile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here, we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and the c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Bandita Poudyal ◽  
Karin Sauer

ABSTRACT A hallmark of biofilms is their heightened resistance to antimicrobial agents. Recent findings suggested a role for bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) in the susceptibility of bacteria to antimicrobial agents; however, no c-di-GMP modulating enzyme(s) contributing to the drug tolerance phenotype of biofilms has been identified. The goal of this study was to determine whether c-di-GMP modulating enzyme(s) specifically contributes to the biofilm drug tolerance of Pseudomonas aeruginosa. Using transcriptome sequencing combined with biofilm susceptibility assays, we identified PA3177 encoding a probable diguanylate cyclase. PA3177 was confirmed to be an active diguanylate cyclase, with overexpression affecting swimming and swarming motility, and inactivation affecting cellular c-di-GMP levels of biofilm but not planktonic cells. Inactivation of PA3177 rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin and hydrogen peroxide. Inactivation of PA3177 also eliminated the recalcitrance of biofilms to killing by tobramycin, with multicopy expression of PA3177 but not PA3177_GGAAF harboring substitutions in the active site, restoring tolerance to wild-type levels. Susceptibility was linked to BrlR, a previously described transcriptional regulator contributing to biofilm tolerance, with inactivation of PA3177 negatively impacting BrlR levels and BrlR-DNA binding. While PA3177 contributed to biofilm drug tolerance, inactivation of PA3177 had no effect on attachment and biofilm formation. Our findings demonstrate for the first time that biofilm drug tolerance by P. aeruginosa is linked to a specific c-di-GMP modulating enzyme, PA3177, with the pool of PA3177-generated c-di-GMP only contributing to biofilm drug tolerance but not to biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document