scholarly journals The Rut Pathway for Pyrimidine Degradation: Novel Chemistry and Toxicity Problems

2010 ◽  
Vol 192 (16) ◽  
pp. 4089-4102 ◽  
Author(s):  
Kwang-Seo Kim ◽  
Jeffrey G. Pelton ◽  
William B. Inwood ◽  
Ulla Andersen ◽  
Sydney Kustu ◽  
...  

ABSTRACT The Rut pathway is composed of seven proteins, all of which are required by Escherichia coli K-12 to grow on uracil as the sole nitrogen source. The RutA and RutB proteins are central: no spontaneous suppressors arise in strains lacking them. RutA works in conjunction with a flavin reductase (RutF or a substitute) to catalyze a novel reaction. It directly cleaves the uracil ring between N-3 and C-4 to yield ureidoacrylate, as established by both nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Although ureidoacrylate appears to arise by hydrolysis, the requirements for the reaction and the incorporation of 18O at C-4 from molecular oxygen indicate otherwise. Mass spectrometry revealed the presence of a small amount of product with the mass of ureidoacrylate peracid in reaction mixtures, and we infer that this is the direct product of RutA. In vitro RutB cleaves ureidoacrylate hydrolytically to release 2 mol of ammonium, malonic semialdehyde, and carbon dioxide. Presumably the direct products are aminoacrylate and carbamate, both of which hydrolyze spontaneously. Together with bioinformatic predictions and published crystal structures, genetic and physiological studies allow us to predict functions for RutC, -D, and -E. In vivo we postulate that RutB hydrolyzes the peracid of ureidoacrylate to yield the peracid of aminoacrylate. We speculate that RutC reduces aminoacrylate peracid to aminoacrylate and RutD increases the rate of spontaneous hydrolysis of aminoacrylate. The function of RutE appears to be the same as that of YdfG, which reduces malonic semialdehyde to 3-hydroxypropionic acid. RutG appears to be a uracil transporter.

1985 ◽  
Vol 108 (4) ◽  
pp. 511-517 ◽  
Author(s):  
Nandalal Bagchi ◽  
Birdie Shivers ◽  
Thomas R. Brown

Abstract. Iodine in excess is known to acutely inhibit thyroidal secretion. In the present study we have characterized the time course of the iodine effect in vitro and investigated the underlying mechanisms. Labelled thyroid glands were cultured in vitro in medium containing mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the proportion of labelled iodotyrosines and iodothyronines recovered at the end of culture and was used as an index of thyroidal secretion. Thyrotrophin (TSH) administered in vivo acutely stimulated the rate of thyroglobulin hydrolysis. Addition of Nal to the culture medium acutely inhibited both basal and TSH-stimulated thyroglobulin hydrolysis. The effect of iodide was demonstrable after 2 h, maximal after 6 h and was not reversible upon removal of iodide. Iodide abolished the dibutyryl cAMP induced stimulation of thyroglobulin hydrolysis. Iodide required organic binding of iodine for its effect but new protein or RNA synthesis was not necessary. The inhibitory effects of iodide and lysosomotrophic agents such as NH4C1 and chloroquin on thyroglobulin hydrolysis were additive suggesting different sites of action. Iodide added in vitro altered the distribution of label in prelabelled thyroglobulin in a way that suggested increased coupling in the thyroglobulin molecule. These data indicate that 1) the iodide effect occurs progressively over a 6 h period, 2) continued presence of iodide is not necessary once the inhibition is established, 3) iodide exerts its action primarily at a post cAMP, prelysosomal site and 4) the effect requires organic binding of iodine, but not new RNA or protein synthesis. Our data are consistent with the hypothesis that excess iodide acutely inhibits thyroglobulin hydrolysis by increasing the resistance of thyroglobulin to proteolytic degradation through increased iodination and coupling.


Author(s):  
Anja Köhler ◽  
Benjamin Escher ◽  
Laura Job ◽  
Marianne Koller ◽  
Horst Thiermann ◽  
...  

AbstractHighly toxic organophosphorus nerve agents, especially the extremely stable and persistent V-type agents such as VX, still pose a threat to the human population and require effective medical countermeasures. Engineered mutants of the Brevundimonas diminuta phosphotriesterase (BdPTE) exhibit enhanced catalytic activities and have demonstrated detoxification in animal models, however, substrate specificity and fast plasma clearance limit their medical applicability. To allow better assessment of their substrate profiles, we have thoroughly investigated the catalytic efficacies of five BdPTE mutants with 17 different nerve agents using an AChE inhibition assay. In addition, we studied one BdPTE version that was fused with structurally disordered PAS polypeptides to enable delayed plasma clearance and one bispecific BdPTE with broadened substrate spectrum composed of two functionally distinct subunits connected by a PAS linker. Measured kcat/KM values were as high as 6.5 and 1.5 × 108 M−1 min−1 with G- and V-agents, respectively. Furthermore, the stereoselective degradation of VX enantiomers by the PASylated BdPTE-4 and the bispecific BdPTE-7 were investigated by chiral LC–MS/MS, resulting in a several fold faster hydrolysis of the more toxic P(−) VX stereoisomer compared to P(+) VX. In conclusion, the newly developed enzymes BdPTE-4 and BdPTE-7 have shown high catalytic efficacy towards structurally different nerve agents and stereoselectivity towards the toxic P(−) VX enantiomer in vitro and offer promise for use as bioscavengers in vivo.


2009 ◽  
Vol 102 (09) ◽  
pp. 454-459 ◽  
Author(s):  
Anne Koehler ◽  
Goetz Nowak ◽  
Mercedes López

SummaryDipetarudin was coupled to polyethylene glycol (PEG)-5000 residues in order to improve its pharmacokinetic profile and to enhance its anticoagulant efficacy. The resulting compounds, mono-and di-PEGylated dipetarudin were purified by gel filtration. Mono-PEGylated dipetarudin exhibited similar activity like its non-conjugated equivalent both in vitro and in vivo. However, di-PEGylated dipetarudin showed longer distribution and elimination half-lives and higher area under the time-concentration curve in comparison with the unmodified inhibitor which may be attributed to decreased renal clearance. Futhermore, ratio k 12/k 21 decreased when the number of PEG chains coupled to dipetarudin increased. It means that the intercompartment transfer of dipetarudin, characterised by a fast distribution and a high retention in the peripheral compartment, is reverted by coupling to PEG. Thus, the transfer of mono-PEGylated dipetarudin between these compartments is similar in both senses and the transfer of di-PEGylated dipetarudin is slower from vascular to extravascular compartment than vice versa. Our results show that di-PEGylated dipetarudin produces a better and longer anticoagulant effect than unmodified dipetarudin which is a desirable attribute for future therapeutic application.


Genome ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 244-252 ◽  
Author(s):  
Peng-Fei Qi ◽  
Yu-Ming Wei ◽  
Qing Chen ◽  
Thérèse Ouellet ◽  
Jia Ai ◽  
...  

Ten novel α-gliadin genes (Gli-ta, Gli-turg1, Gli-turg2, Gli-turg3, Gli-turg4, Gli-turg5, Gli-turg6, Gli-cs1, Gli-cs2, and Gli-cs3) with unique characteristics were isolated from wheat ( Triticum aestivum L.), among which Gli-cs1, Gli-cs2, Gli-cs3, and Gli-turg6 were pseudogenes. Gli-cs3 and nine other sequences were much larger and smaller, respectively, than the typical α-gliadins. This variation was caused by insertion or deletion of the unique domain I and a polyglutamine region, possibly the result of illegitimate recombination. Consequently, Gli-cs3 contained 10 cysteine residues, whereas there were 2 cysteine residues only in the other nine sequences. Gli-ta/Gli-ta-like α-gliadin genes are normally expressed during the development of seeds. SDS–PAGE analysis showed that in-vitro-expressed Gli-ta could form intermolecular disulphide bonds and could be chain extenders. A protein band similar in size to Gli-ta has been observed in seed extracts, and mass spectrometry results confirm that the band contains small molecular mass α-gliadins, which is a characteristic of the novel α-gliadins. Mass spectrometry results also indicated that the two cysteine residues of Gli-ta/Gli-ta-like proteins participated in the formation of intermolecular disulphide bonds in vivo.


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2257-2266 ◽  
Author(s):  
Helmuth Adelsberger ◽  
Christian Hertel ◽  
Erich Glawischnig ◽  
Vladimir V. Zverlov ◽  
Wolfgang H. Schwarz

Four extracellular enzymes of the thermophilic bacterium Clostridium stercorarium are involved in the depolymerization of de-esterified arabinoxylan: Xyn11A, Xyn10C, Bxl3B, and Arf51B. They were identified in a collection of eight clones producing enzymes hydrolysing xylan (xynA, xynB, xynC), β-xyloside (bxlA, bxlB, bglZ) and α-arabinofuranoside (arfA, arfB). The modular enzymes Xyn11A and Xyn10C represent the major xylanases in the culture supernatant of C. stercorarium. Both hydrolyse arabinoxylan in an endo-type mode, but differ in the pattern of the oligosaccharides produced. Of the glycosidases, Bxl3B degrades xylobiose and xylooligosaccharides to xylose, and Arf51B is able to release arabinose residues from de-esterified arabinoxylan and from the oligosaccharides generated. The other glycosidases either did not attack or only marginally attacked these oligosaccharides. Significantly more xylanase and xylosidase activity was produced during growth on xylose and xylan. This is believed to be the first time that, in a single thermophilic micro-organism, the complete set of enzymes (as well as the respective genes) to completely hydrolyse de-esterified arabinoxylan to its monomeric sugar constituents, xylose and arabinose, has been identified and the enzymes produced in vivo. The active enzyme system was reconstituted in vitro from recombinant enzymes.


2004 ◽  
Vol 82 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Norma Marchesini ◽  
Yusuf A Hannun

Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingo myelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glu ta thi one, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).Key words: sphingomyelinase, ceramide, apoptosis, Niemann-Pick disease, FAN (factor associated with N-SMase activation).


1985 ◽  
Vol 106 (2) ◽  
pp. 153-157
Author(s):  
N. Bagchi ◽  
T. R. Brown

ABSTRACT It has been reported that prior exposure of thyroid tissue to TSH in vitro induces a state of refractoriness to new challenges of the hormone. We have investigated the effect of repeated TSH treatment on thyroid secretion to determine whether such refractoriness exists in vivo. The rate of thyroid secretion was estimated by measuring the rate of hydrolysis of labelled thyroglobulin from mouse thyroid glands in vitro. The thyroid glands were labelled in vivo with 131I and then cultured for 20 h in the presence of mononitrotyrosine, an inhibitor of iodotyrosine deiodinase. The rate of hydrolysis of labelled thyroglobulin was measured as the percentage of radioactivity released as free iodotyrosines and iodothyronines into the gland and the medium at the end of incubation. Thyrotrophin was administered in vivo at hourly intervals for 2–4 injections. The corresponding control group received saline injections every hour except for the last injection when they received TSH. The peak rates of thyroglobulin hydrolysis, measured 2 h following the last injection, were similar in animals receiving two, three or four TSH injections and were not different from those in the control groups. Serum tri-iodothyronine and thyroxine concentrations 2 h after the last injection were higher in the groups receiving multiple TSH injections. Thyroidal cyclic AMP accumulation in response to TSH was markedly depressed in the group receiving multiple injections compared with the group receiving a single injection of TSH in vivo. These data indicate that (1) the stimulatory effect of TSH on thyroidal secretion is not diminished by prior administration of the hormone in vivo, (2) repeated TSH administrations in vivo cause refractoriness of the adenylate cyclase response to TSH and (3) a dichotomy exists between the secretory response and the adenylate cyclase response to repeated administrations of TSH. J. Endocr. (1985) 106, 153–157


Sign in / Sign up

Export Citation Format

Share Document