scholarly journals Biosynthesis of Aliphatic Polyketides by Type III Polyketide Synthase and Methyltransferase in Bacillus subtilis

2009 ◽  
Vol 191 (15) ◽  
pp. 4916-4923 ◽  
Author(s):  
Chiaki Nakano ◽  
Hiroki Ozawa ◽  
Genki Akanuma ◽  
Nobutaka Funa ◽  
Sueharu Horinouchi

ABSTRACT Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.

ChemBioChem ◽  
2011 ◽  
Vol 12 (14) ◽  
pp. 2166-2176 ◽  
Author(s):  
Takayuki Hayashi ◽  
Yuta Kitamura ◽  
Nobutaka Funa ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

2013 ◽  
Vol 23 (20) ◽  
pp. 5637-5640 ◽  
Author(s):  
Makoto Hashimoto ◽  
Satomi Ishida ◽  
Yasuyo Seshime ◽  
Katsuhiko Kitamoto ◽  
Isao Fujii

1999 ◽  
Vol 67 (6) ◽  
pp. 2964-2968 ◽  
Author(s):  
Xiaolong Fan ◽  
Felix Stelter ◽  
Rene Menzel ◽  
Robert Jack ◽  
Ingo Spreitzer ◽  
...  

ABSTRACT The CD14 molecule expressed on monocytes and macrophages is a high-affinity receptor for bacterial lipopolysaccharide (LPS) and hence an important component of the innate immune system. LPS binding protein (LBP) is required to facilitate the binding of LPS to CD14 in vitro and is necessary for the induction of an inflammatory response to LPS in vivo. Here we show that CD14 and LBP can also bind to lipoteichoic acid from the gram-positive bacterium Bacillus subtilis. Although CD14 does not interact with intact B. subtilisorganisms, a brief exposure of the bacteria to serum converts them into a form which can bind to CD14 in an LBP-dependent reaction. When serum-pretreated B. subtilis organisms are incubated with the myelomonocytic cell line U937, which expresses CD14, the bacteria are rapidly phagocytosed. The phagocytosis is strictly dependent both on LBP and on CD14. These in vitro results suggest that LBP plays a role in the innate response not only to gram-negative but also to gram-positive infections.


2005 ◽  
Vol 187 (23) ◽  
pp. 8149-8155 ◽  
Author(s):  
Nobutaka Funa ◽  
Masanori Funabashi ◽  
Yasuo Ohnishi ◽  
Sueharu Horinouchi

ABSTRACT Dihydroxyphenylalanine (DOPA) melanins formed from tyrosine by tyrosinases are found in microorganisms, plants, and animals. Most species in the soil-dwelling, gram-positive bacterial genus Streptomyces produce DOPA melanins and melanogenesis is one of the characteristics used for taxonomy. Here we report a novel melanin biosynthetic pathway involving a type III polyketide synthase (PKS), RppA, and a cytochrome P-450 enzyme, P-450mel, in Streptomyces griseus. In vitro reconstitution of the P-450mel catalyst with spinach ferredoxin-NADP+ reductase/ferredoxin revealed that it catalyzed oxidative biaryl coupling of 1,3,6,8-tetrahydroxynaphthalene (THN), which was formed from five molecules of malonyl-coenzyme A by the action of RppA to yield 1,4,6,7,9,12-hexahydroxyperylene-3,10-quinone (HPQ). HPQ readily autopolymerized to generate HPQ melanin. Disruption of either the chromosomal rppA or P-450mel gene resulted in abolishment of the HPQ melanin synthesis in S. griseus and a decrease in the resistance of spores to UV-light irradiation. These findings show that THN-derived melanins are not exclusive in eukaryotic fungal genera but an analogous pathway is conserved in prokaryotic streptomycete species as well. A vivid contrast in THN melanin biosynthesis between streptomycetes and fungi is that the THN synthesized by the action of a type III PKS is used directly for condensation in the former, while the THN synthesized by the action of type I PKSs is first reduced and the resultant 1,8-dihydroxynaphthalene is then condensed in the latter.


2005 ◽  
Vol 127 (1) ◽  
pp. 64-65 ◽  
Author(s):  
Jae-Cheol Jeong ◽  
Aravind Srinivasan ◽  
Sabine Grüschow ◽  
Horacio Bach ◽  
David H. Sherman ◽  
...  

Author(s):  
Dengfeng Yang ◽  
Takahiro Mori ◽  
Takashi Matsui ◽  
Makoto Hashimoto ◽  
Hiroyuki Morita ◽  
...  

CsyB fromAspergillus oryzaeis a novel type III polyketide synthase that catalyzes the formation of csypyrone B1 [4-(3-acetyl-4-hydroxy-2-oxo-2H-pyran-6-yl)butyric acid] from fatty acyl-CoA, malonyl-CoA and acetoacetyl-CoA. Recombinant CsyB expressed inEscherichia coliwas crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to spaceP21, with unit-cell parametersa= 70.0,b= 104.8,c= 73.5 Å, β = 114.4°.


2009 ◽  
Vol 16 (11) ◽  
pp. 1197-1207 ◽  
Author(s):  
Abhirup Das ◽  
Chaitan Khosla

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


Sign in / Sign up

Export Citation Format

Share Document