scholarly journals Molecular Analyses of a Three-Subunit Euryarchaeal Clamp Loader Complex from Methanosarcina acetivorans

2009 ◽  
Vol 191 (21) ◽  
pp. 6539-6549 ◽  
Author(s):  
Yi-Hsing Chen ◽  
Yuyen Lin ◽  
Aya Yoshinaga ◽  
Benazir Chhotani ◽  
Jenna L. Lorenzini ◽  
...  

ABSTRACT Chromosomal DNA replication is dependent on processive DNA synthesis. Across the three domains of life and in certain viruses, a toroidal sliding clamp confers processivity to replicative DNA polymerases by encircling the DNA and engaging the polymerase in protein/protein interactions. Sliding clamps are ring-shaped; therefore, they have cognate clamp loaders that open and load them onto DNA. Here we use biochemical and mutational analyses to study the structure/function of the Methanosarcina acetivorans clamp loader or replication factor C (RFC) homolog. M. acetivorans RFC (RFC Ma ), which represents an intermediate between the common archaeal RFC and the eukaryotic RFC, comprises two different small subunits (RFCS1 and RFCS2) and a large subunit (RFCL). Size exclusion chromatography suggested that RFCS1 exists in oligomeric states depending on protein concentration, while RFCS2 exists as a monomer. Protein complexes of RFCS1/RFCS2 formed in solution; however, they failed to stimulate DNA synthesis by a cognate DNA polymerase in the presence of its clamp. Determination of the subunit composition and previous mutational analysis allowed the prediction of the spatial distribution of subunits in this new member of the clamp loader family. Three RFCS1 subunits are flanked by an RFCS2 and an RFCL. The spatial distribution is, therefore, reminiscent of the minimal Escherichia coli clamp loader that exists in space as three γ-subunits (motor) flanked by the δ′ (stator) and the δ (wrench) subunits. Mutational analysis, however, suggested that the similarity between the two clamp loaders does not translate into the complete conservation of the functions of individual subunits within the RFC Ma complex.

2003 ◽  
Vol 23 (2) ◽  
pp. 721-732 ◽  
Author(s):  
Lisa A. Anderson ◽  
Neil D. Perkins

ABSTRACT The RelA (p65) subunit of NF-κB is an important regulator of inflammation, proliferation, and apoptosis. We have discovered that the large subunit, p140, of replication factor C (RFC) can function as a regulator of RelA. RFC is a clamp loader, facilitating the addition and removal of proliferating-cell nuclear antigen from DNA during replication and repair but can also interact directly with the retinoblastoma tumor suppressor protein and the transcription factor C/EBPα. We find that RFC (p140) interacts with RelA both in vitro and in vivo and stimulates RelA transactivation. In contrast, coexpression of fragments of RFC (p140) that mediate the interaction with RelA results in transcriptional inhibition. The significance of this regulation was confirmed by using short interfering RNA oligonucleotides targeted to RFC (p140). Down regulation of endogenous RFC (p140) inhibits expression from a chromosomally integrated reporter plasmid induced by endogenous, TNF-α-activated NF-κB. Dominant negative fragments of RFC (p140) also cooperate with overexpressed RelA to induce cell death. Interestingly, RFC (p140) also interacts with the tumor suppressor p53. Taken together, these observations suggest that, in addition to its previously described function in DNA replication and repair, RFC (p140) has an important role as a regulator of transcription and NF-κB activity.


2020 ◽  
Vol 117 (38) ◽  
pp. 23571-23580 ◽  
Author(s):  
Christl Gaubitz ◽  
Xingchen Liu ◽  
Joseph Magrino ◽  
Nicholas P. Stone ◽  
Jacob Landeck ◽  
...  

DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader replication factor C (RFC) and sliding clamp proliferating cell nuclear antigen (PCNA) are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryogenic electron microscopy to an overall resolution of ∼3.4 Å. The active sites of RFC are fully bound to adenosine 5′-triphosphate (ATP) analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation before PCNA opening, with the clamp loader ATPase modules forming an overtwisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a “limited change/induced fit” mechanism in which the clamp first opens, followed by DNA binding, inducing opening of the loader to release autoinhibition. The proposed change from an overtwisted to an active conformation reveals an additional regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.


2001 ◽  
Vol 21 (11) ◽  
pp. 3725-3737 ◽  
Author(s):  
Hee-Sook Kim ◽  
Steven J. Brill

ABSTRACT The large subunit of replication protein A (Rpa1) consists of three single-stranded DNA binding domains and an N-terminal domain (Rpa1N) of unknown function. To determine the essential role of this domain we searched for mutations that require wild-type Rpa1N for viability in yeast. A mutation in RFC4, encoding a small subunit of replication factor C (RFC), was found to display allele-specific interactions with mutations in the gene encoding Rpa1 (RFA1). Mutations that map to Rpa1N and confer sensitivity to the DNA synthesis inhibitor hydroxyurea, such asrfa1-t11, are lethal in combination withrfc4-2. The rfc4-2 mutant itself is sensitive to hydroxyurea, and like rfc2 and rfc5 strains, it exhibits defects in the DNA replication block and intra-S checkpoints. RFC4 and the DNA damage checkpoint geneRAD24 were found to be epistatic with respect to DNA damage sensitivity. We show that the rfc4-2 mutant is defective in the G1/S DNA damage checkpoint response and that both therfc4-2 and rfa1-t11 strains are defective in the G2/M DNA damage checkpoint. Thus, in addition to its essential role as part of the clamp loader in DNA replication, Rfc4 plays a role as a sensor in multiple DNA checkpoint pathways. Our results suggest that a physical interaction between Rfc4 and Rpa1N is required for both roles.


2001 ◽  
Vol 183 (8) ◽  
pp. 2614-2623 ◽  
Author(s):  
Isaac K. O. Cann ◽  
Sonoko Ishino ◽  
Mihoko Yuasa ◽  
Hiromi Daiyasu ◽  
Hiroyuki Toh ◽  
...  

ABSTRACT Replication factor C (RFC) and proliferating cell nuclear antigen (PCNA) are accessory proteins essential for processive DNA synthesis in the domain Eucarya. The function of RFC is to load PCNA, a processivity factor of eukaryotic DNA polymerases δ and ɛ, onto primed DNA templates. RFC-like genes, arranged in tandem in thePyrococcus furiosus genome, were cloned and expressed individually in Escherichia coli cells to determine their roles in DNA synthesis. The P. furiosus RFC (PfuRFC) consists of a small subunit (RFCS) and a large subunit (RFCL). Highly purified RFCS possesses an ATPase activity, which was stimulated up to twofold in the presence of both single-stranded DNA (ssDNA) andP. furiosus PCNA (PfuPCNA). The ATPase activity of PfuRFC itself was as strong as that of RFCS. However, in the presence of PfuPCNA and ssDNA, PfuRFC exhibited a 10-fold increase in ATPase activity under the same conditions. RFCL formed very large complexes by itself and had an extremely weak ATPase activity, which was not stimulated by PfuPCNA and DNA. The PfuRFC stimulated PfuPCNA-dependent DNA synthesis by both polymerase I and polymerase II from P. furiosus. We propose that PfuRFC is required for efficient loading of PfuPCNA and that the role of RFC in processive DNA synthesis is conserved in Archaea and Eucarya.


2020 ◽  
Author(s):  
Christl Gaubitz ◽  
Xingchen Liu ◽  
Joseph Magrino ◽  
Nicholas P. Stone ◽  
Jacob Landeck ◽  
...  

SUMMARYDNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be actively opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader Replication Factor C (RFC) and sliding clamp PCNA are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryo-EM to an overall resolution of ~3.4 Å. The active sites of RFC are fully bound to ATP analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation prior to PCNA opening, with the clamp loader ATPase modules forming an over-twisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a ‘Limited Change/Induced Fit’ mechanism in which the clamp first opens, followed by DNA binding inducing opening of the loader to release auto-inhibition. The proposed change from an over-twisted to an active conformation reveals a novel regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health.


2020 ◽  
Vol 52 (12) ◽  
pp. 1948-1958
Author(s):  
Kyoo-young Lee ◽  
Su Hyung Park

AbstractEukaryotic sliding clamp proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity factor for DNA polymerases and as a binding and acting platform for many proteins. The ring-shaped PCNA homotrimer and the DNA damage checkpoint clamp 9-1-1 are loaded onto DNA by clamp loaders. PCNA can be loaded by the pentameric replication factor C (RFC) complex and the CTF18-RFC-like complex (RLC) in vitro. In cells, each complex loads PCNA for different purposes; RFC-loaded PCNA is essential for DNA replication, while CTF18-RLC-loaded PCNA participates in cohesion establishment and checkpoint activation. After completing its tasks, PCNA is unloaded by ATAD5 (Elg1 in yeast)-RLC. The 9-1-1 clamp is loaded at DNA damage sites by RAD17 (Rad24 in yeast)-RLC. All five RFC complex components, but none of the three large subunits of RLC, CTF18, ATAD5, or RAD17, are essential for cell survival; however, deficiency of the three RLC proteins leads to genomic instability. In this review, we describe recent findings that contribute to the understanding of the basic roles of the RFC complex and RLCs and how genomic instability due to deficiency of the three RLCs is linked to the molecular and cellular activity of RLC, particularly focusing on ATAD5 (Elg1).


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Sawsan Napthine ◽  
Chris H. Hill ◽  
Holly C. M. Nugent ◽  
Ian Brierley

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


Genetics ◽  
1996 ◽  
Vol 142 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Michael A McAlear ◽  
K Michelle Tuffo ◽  
Connie Holm

We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Wendy Ribble ◽  
Shawn D. Kane ◽  
James M. Bullard

DNA replication in bacteria is accomplished by a multicomponent replicase, the DNA polymerase III holoenzyme (pol III HE). The three essential components of the pol III HE are the α polymerase, the β sliding clamp processivity factor, and the DnaX clamp-loader complex. We report here the assembly of the functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme capable of DNA synthesis consists of α, β and DnaX (τ and γ), δ and δ′ components of the clamp-loader complex. The proteins were each cloned and expressed in a native form. Each component of the system was purified extensively. The minimum holoenzyme from these five purified subunits reassembled is sufficient for rapid and processive DNA synthesis. In an isolated form the α polymerase was found to be unstable at temperatures above 65°C. We were able to increase the thermostability of the pol III HE to 98°C by addition and optimization of various buffers and cosolvents. In the optimized buffer system we show that a replicative polymerase apparatus, Tth pol III HE, is capable of rapid amplification of regions of DNA up to 15,000 base pairs in PCR reactions.


Sign in / Sign up

Export Citation Format

Share Document