scholarly journals Lsr2 of Mycobacterium Represents a Novel Class of H-NS-Like Proteins

2008 ◽  
Vol 190 (21) ◽  
pp. 7052-7059 ◽  
Author(s):  
Blair R. G. Gordon ◽  
Robin Imperial ◽  
Linru Wang ◽  
William Wiley Navarre ◽  
Jun Liu

ABSTRACT Lsr2 is a small, basic protein present in Mycobacterium and related actinomycetes. Our previous in vitro biochemical studies showed that Lsr2 is a DNA-bridging protein, a property shared by H-NS-like proteins in gram-negative bacteria. Here we present in vivo evidence based on genetic complementation experiments that Lsr2 is a functional analog of H-NS, the first such protein identified in gram-positive bacteria. We show that lsr2 can complement the phenotypes related to hns mutations in Escherichia coli, including β-glucoside utilization, mucoidy, motility, and hemolytic activity. We also show that Lsr2 binds specifically to H-NS-regulated genes and the repression of hlyE by Lsr2 can be partially eliminated by overexpression of slyA, suggesting that the molecular mechanisms of Lsr2 repression and depression are similar to those of H-NS. The functional equivalence of these two proteins is further supported by the ability of hns to complement the lsr2 phenotype in Mycobacterium smegmatis. Taken together, our results demonstrate unequivocally that Lsr2 is an H-NS-like protein.

2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Rachel A Gottschalk ◽  
Michael G Dorrington ◽  
Bhaskar Dutta ◽  
Kathleen S Krauss ◽  
Andrew J Martins ◽  
...  

Despite existing evidence for tuning of innate immunity to different classes of bacteria, the molecular mechanisms used by macrophages to tailor inflammatory responses to specific pathogens remain incompletely defined. By stimulating mouse macrophages with a titration matrix of TLR ligand pairs, we identified distinct stimulus requirements for activating and inhibitory events that evoked diverse cytokine production dynamics. These regulatory events were linked to patterns of inflammatory responses that distinguished between Gram-positive and Gram-negative bacteria, both in vitro and after in vivo lung infection. Stimulation beyond a TLR4 threshold and Gram-negative bacteria-induced responses were characterized by a rapid type I IFN-dependent decline in inflammatory cytokine production, independent of IL-10, whereas inflammatory responses to Gram-positive species were more sustained due to the absence of this IFN-dependent regulation. Thus, disparate triggering of a cytokine negative feedback loop promotes tuning of macrophage responses in a bacteria class-specific manner and provides context-dependent regulation of inflammation dynamics.


2000 ◽  
Vol 68 (3) ◽  
pp. 1600-1607 ◽  
Author(s):  
Andreas Sing ◽  
Thomas Merlin ◽  
Hans-Peter Knopf ◽  
Peter J. Nielsen ◽  
Harald Loppnow ◽  
...  

ABSTRACT We investigated the reason for the inability of lipopolysaccharide (LPS)-resistant (Lps-defective [Lpsd ]) C57BL/10ScCr mice to produce beta interferon (IFN-β) when stimulated with bacteria. For this purpose, the IFN-β and other macrophage cytokine responses induced by LPS and several killed gram-negative and gram-positive bacteria in LPS-sensitive (Lps-normal [Lpsn ]; C57BL/10ScSn and BALB/c) and Lpsd (C57BL/10ScCr and BALB/c/l) mice in vitro and in vivo were investigated on the mRNA and protein levels. In addition, double-stranded RNA (dsRNA) was used as a nonbacterial stimulus. LPS and all gram-negative bacteria employed induced IFN-β in the Lpsn mice but not in theLpsd mice. All gram-positive bacteria tested failed to induce significant amounts of IFN-β in all four of the mouse strains used. As expected, all other cytokines tested (tumor necrosis factor alpha, interleukin 1α [IL-1α], IL-6, and IL-10) were differentially induced by gram-negative and gram-positive bacteria. Stimulation with dsRNA induced IFN-β and all other cytokines mentioned above in all mouse strains, regardless of their LPS sensitivities. The results suggest strongly that LPS is the only bacterial component capable of inducing IFN-β in significant amounts that are readily detectable under the conditions used in this study. Consequently, in mice, IFN-β is inducible only by gram-negative bacteria, but not in C57BL/10ScCr or other LPS-resistant mice.


2002 ◽  
Vol 46 (9) ◽  
pp. 3071-3074 ◽  
Author(s):  
Hee-Jeong Yun ◽  
Yu-Hong Min ◽  
Jung-A Lim ◽  
Jin-Wook Kang ◽  
So-Young Kim ◽  
...  

ABSTRACT The in vitro and in vivo activities of DW286, a novel fluoronaphthyridone with potent antibacterial activity, were compared with those of ciprofloxacin, gemifloxacin, sparfloxacin, and trovafloxacin. Against gram-positive bacteria, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Enterococcus faecalis, the in vitro activity of DW286 was stronger than that of any other reference antibiotic. Against gram-negative bacteria, the activity of DW286 was similar to those of trovafloxacin and gemifloxacin but was weaker than that of ciprofloxacin. In a mouse systemic infection caused by three S. aureus strains, including methicillin-resistant S. aureus and quinolone-resistant S. aureus (QRSA), DW286 demonstrated the most potent activity, as found in vitro. Specially, DW286 is ≥8-fold more active against QRSA than the other fluoroquinolones. And the 50% protective doses for DW286 were correspondent with the in vitro activities.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3532-3543 ◽  
Author(s):  
Geoff P. Doherty ◽  
Mark J. Fogg ◽  
Anthony J. Wilkinson ◽  
Peter J. Lewis

Bacterial RNA polymerases (RNAPs) contain several small auxiliary subunits known to co-purify with the core α, β and β′ subunits. The ω subunit is conserved between Gram-positive and Gram-negative bacteria, while the δ subunit is conserved within, but restricted to, Gram-positive bacteria. Although various functions have been assigned to these subunits via in vitro assays, very little is known about their in vivo roles. In this work we constructed a pair of vectors to investigate the subcellular localization of the δ and ω subunits in Bacillus subtilis with respect to the core RNAP. We found these subunits to be closely associated with RNAP involved in transcribing both mRNA and rRNA operons. Quantification of these subunits revealed δ to be present at equimolar levels with RNAP and ω to be present at around half the level of core RNAP. For comparison, the localization and quantification of RNAP β′ and ω subunits in Escherichia coli was also investigated. Similar to B. subtilis, β′ and ω closely associated with the nucleoid and formed subnucleoid regions of high green fluorescent protein intensity, but, unlike ω in B. subtilis, ω levels in E. coli were close to parity with those of β′. These results indicate that δ is likely to be an integral RNAP subunit in Gram-positives, whereas ω levels differ substantially between Gram-positives and -negatives. The ω subunit may be required for RNAP assembly and subsequently be turned over at different rates or it may play roles in Gram-negative bacteria that are performed by other factors in Gram-positives.


1998 ◽  
Vol 42 (11) ◽  
pp. 2943-2949 ◽  
Author(s):  
Makoto Matsumoto ◽  
Hisashi Tamaoka ◽  
Hiroshi Ishikawa ◽  
Mikio Kikuchi

ABSTRACT OPC-20011, a new parenteral 2-oxaisocephem antibiotic, has an oxygen atom at the 2- position of the cephalosporin frame. OPC-20011 had the best antibacterial activities against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, and penicillin-resistant Streptococcus pneumoniae: MICs at which 90% of the isolates were inhibited were 6.25, 6.25, and 0.05 μg/ml, respectively. Its activity is due to a high affinity of the penicillin-binding protein 2′ in MRSA, an affinity which was approximately 1,050 times as high as that for flomoxef. Against gram-negative bacteria, OPC-20011 also showed antibacterial activities similar to those of ceftazidime. The in vivo activities of OPC-20011 were comparable to or greater than those of reference compounds in murine models of systemic infection caused by gram-positive and -negative pathogens. OPC-20011 was up to 10 times as effective as vancomycin against MRSA infections in mice. This better in vivo efficacy is probably due to the bactericidal activity of OPC-20011, while vancomycin showed bacteriostatic activity against MRSA. OPC-20011 produced a significant decrease of viable counts in lung tissue at a dose of 2.5 mg/kg of body weight, an efficacy similar to that of ampicillin at a dose of 10 to 20 mg/kg on an experimental murine model of respiratory tract infection caused by non-ampicillin-susceptibleS. pneumoniae T-0005. The better therapeutic efficacy of OPC-20011 was considered to be due to its potent antibacterial activity and low affinity for serum proteins of experimental animals (29% in mice and 6.4% in rats).


2021 ◽  
Author(s):  
Maho Yagi-Utsumi ◽  
Kazuhiro Aoki ◽  
Hiroki Watanabe ◽  
Chihong Song ◽  
Seiji Nishimura ◽  
...  

Anhydrobiosis is one of the most extensively studied forms of cryptobiosis that is induced in certain organisms as a response to desiccation. Anhydrobiotic species has been hypothesized to produce substances that can protect their biological components and/or cell membranes without water. In extremotolerant tardigrades, highly hydrophilic and heat-soluble protein families, cytosolic abundant heat-soluble (CAHS) proteins, have been identified, which are postulated to be integral parts of the tardigrades' response to desiccation. However, the molecular mechanisms underlying these protein functions remain to be fully elucidated. In this study, in vitro and in vivo characterizations of the self-assembling property of CAHS1 protein, a major isoform of CAHS proteins from Ramazzottius varieornatus, using a series of spectroscopic and microscopic techniques. Our in vitro observations showed that CAHS1 proteins homo-oligomerized via the C-terminal α-helical region and formed a hydrogel as their concentration increased, and that these molecular assembling processes were reversible. Furthermore, our in vivo observations demonstrated that the overexpressed CAHS1 proteins formed condensates under desiccation-mimicking conditions. These data strongly suggested that, upon drying, the CAHS1 proteins form oligomers and eventually underwent sol-gel transition in tardigrade cytosols. Thus, it is proposed that the CAHS1 proteins form the cytosolic fibrous condensates, which presumably have variable mechanisms for the desiccation tolerance of tardigrades. These findings provide insights into the protective mechanisms involved in the anhydrobiosis of tardigrades.


2001 ◽  
Vol 69 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Tové C. Bolken ◽  
Christine A. Franke ◽  
Kevin F. Jones ◽  
Gloria O. Zeller ◽  
C. Hal Jones ◽  
...  

ABSTRACT The srtA gene product, SrtA, has been shown to be required for cell wall anchoring of protein A as well as virulence in the pathogenic bacterium Staphylococcus aureus. There are five major mechanisms for displaying proteins at the surface of gram-positive bacteria (P. Cossart and R. Jonquieres, Proc. Natl. Acad. Sci. USA 97:5013–5015, 2000). However, since many of the known surface proteins of gram-positive bacteria are believed to be exported and anchored via the sortase pathway, it was of interest to determine ifsrtA plays a similar role in other gram-positive bacteria. To that end, the srtA gene in the human oral commensal organism Streptococcus gordonii was insertionally inactivated. The srtA mutant S. gordoniiexhibited a marked reduction in quantity of a specific anchored surface protein. Furthermore, the srtA mutant had reduced binding to immobilized human fibronectin and had a decreased ability to colonize the oral mucosa of mice. Taken together, these results suggest that the activity of SrtA plays an important role in the biology of nonpathogenic as well as pathogenic gram-positive cocci.


2000 ◽  
Vol 44 (8) ◽  
pp. 2154-2159 ◽  
Author(s):  
M. P. Singh ◽  
P. J. Petersen ◽  
W. J. Weiss ◽  
F. Kong ◽  
M. Greenstein

ABSTRACT Saccharomicins A and B, two new heptadecaglycoside antibiotics, were isolated from the fermentation broth of the rare actinomyceteSaccharothrix espanaensis. They represent a novel class of bactericidal antibiotics that are active both in vitro and in vivo against bacteria and yeast (MICs: Staphylococcus aureus, <0.12 to 0.5; vancomycin-resistant enterococci, 0.25 to 16; gram-negative bacteria, 0.25 to >128; and yeast, >128 μg/ml), including multiply resistant strains. Saccharomicins protected mice from lethal challenges by staphylococci (subcutaneous 50% effective dose range of 0.06 to 2.6 mg/kg of body weight, depending on theS. aureus strain). The 50% lethal dose by the subcutaneous route was 16 mg/kg. Mechanistic studies with Escherichia coli imp and Bacillus subtilis suggested complete, nonspecific inhibition of DNA, RNA, and protein biosynthesis within 10 min of drug treatment. Microscopic examination of drug-treated cells also suggested cell lysis. These data are consistent with a strong membrane-disruptive activity. The antibacterial activities of the saccharomicins against gram-positive bacteria were unaffected by the presence of Ca2+ or Mg2+, but activity against gram-negative bacteria was substantially reduced.


Sign in / Sign up

Export Citation Format

Share Document