scholarly journals The lspA Gene, Encoding the Type II Signal Peptidase of Rickettsia typhi: Transcriptional and Functional Analysis

2006 ◽  
Vol 189 (2) ◽  
pp. 336-341 ◽  
Author(s):  
M. Sayeedur Rahman ◽  
Shane M. Ceraul ◽  
Sheila M. Dreher-Lesnick ◽  
Magda S. Beier ◽  
Abdu F. Azad

ABSTRACT Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.

2003 ◽  
Vol 185 (15) ◽  
pp. 4578-4584 ◽  
Author(s):  
M. Sayeedur Rahman ◽  
Jason A. Simser ◽  
Kevin R. Macaluso ◽  
Abdu F. Azad

ABSTRACT The type I signal peptidase lepB genes from Rickettsia rickettsii and Rickettsia typhi, the etiologic agents of Rocky Mountain spotted fever and murine typhus, respectively, were cloned and characterized. Sequence analysis of the cloned lepB genes from R. rickettsii and R. typhi shows open reading frames of 801 and 795 nucleotides, respectively. Alignment analysis of the deduced amino acid sequences reveals the presence of highly conserved motifs that are important for the catalytic activity of bacterial type I signal peptidase. Reverse transcription-PCR and Northern blot analysis demonstrated that the lepB gene of R. rickettsii is cotranscribed in a polycistronic message with the putative nuoF (encoding NADH dehydrogenase I chain F), secF (encoding protein export membrane protein), and rnc (encoding RNase III) genes in a secF-nuoF-lepB-rnc cluster. The cloned lepB genes from R. rickettsii and R. typhi have been demonstrated to possess signal peptidase I activity in Escherichia coli preprotein processing in vivo by complementation assay.


1985 ◽  
Vol 5 (5) ◽  
pp. 1002-1008 ◽  
Author(s):  
E S Allebach ◽  
D Boettiger ◽  
M Pacifici ◽  
S L Adams

We have analyzed the effects of transformation by Rous sarcoma virus on expression of types I and II collagen and fibronectin genes in vertebral chondrocytes and compared them with expression of these genes in skin fibroblasts. Transformed chondrocytes display a dramatically decreased amount of type II collagen RNA, which can account fully for the decreased synthetic rate of this protein. Paradoxically, these cells also display greatly increased amounts of type I collagen RNAs, which are translated efficiently in vitro, but not in the intact cells. We show here that the type I collagen RNAs in transformed chondrocytes are nearly indistinguishable from those found in skin fibroblasts, and that they clearly differ from the type I collagen RNAs found in normal chondrocytes. Transformed chondrocytes also display an increased amount of fibronectin RNAs, which can account fully for the increased synthetic rate of this protein. Thus, the effects of transformation by Rous sarcoma virus on type I collagen and fibronectin RNAs in chondrocytes are the opposite of those observed in fibroblasts, which display decreased amounts of these three RNAs. These data indicate that the effects of transformation on the genes encoding type I collagen and fibronectin must be modulated by host cell-specific factors. They also imply that the types I and II collagen genes may be regulated by different mechanisms, the type I genes being controlled at both transcriptional and posttranscriptional levels, and the type II gene being controlled primarily at the transcriptional level.


2007 ◽  
Vol 56 (6) ◽  
pp. 715-721 ◽  
Author(s):  
Hsi Liu ◽  
Berta Rodes ◽  
Robert George ◽  
Bret Steiner

The acidic repeat protein (arp) genes from three subspecies of the treponeme Treponema pallidum (T. pallidum subsp. pallidum, Nichols strain; T. pallidum subsp. pertenue, CDC-1 and CDC-2 strains; and T. pallidum subsp. endemicum, Bosnia A strain) were cloned and sequenced. The predicted protein sequence contained a high percentage of glutamic acid, hence the name acidic repeat protein, or Arp. The protein had a potential membrane-spanning domain and a signal peptidase I site. The gene from the Nichols strain of T. pallidum subsp. pallidum contained a set of 14 nearly identical repeats of a 60 bp sequence, which occupied ∼51 % of the length of the gene. Analyses of arp from laboratory strains showed that the 5′ and 3′ ends of the genes were conserved, but there was considerable heterogeneity in the number of repeats of this 60 bp sequence. Based on amino acid variations, the 14 sequence repeats could be classified into three types, which were named type I, type II and type III repeats. The type II repeat was the most common in the strains examined. The arp gene of the Nichols strain was subsequently cloned into the expression vector pBAD/TOPO ThioFusion. The expressed protein was detected in a Western blot assay using rabbit immune sera produced against T. pallidum, or synthetic peptides derived from the repeat sequences. Using an ELISA, rapid plasma reagin (RPR) test-positive sera reacted with synthetic peptides derived from the repeat region but not with peptides derived from N and C termini of the Arp protein. These results show that the Arp protein is immunogenic and could prove to be a useful target for serological diagnosis of T. pallidum infection.


1978 ◽  
Vol 173 (2) ◽  
pp. 365-371 ◽  
Author(s):  
W G Crewther ◽  
A S Inglis ◽  
N M McKern

1. The helical fragments obtained by partial chymotryptic digestion of S-carboxymethylkeratine-A, the low-sulphur fraction from wool, were fractionated into type-I and type-II helical segments in aqueous urea under conditions limiting carbamoylation. 2. The amino acid sequence of a 109-residue type-II segment was completed by using the sequenator. 3. When the data were incorporated into a helical model of 3.6 residues per turn the hydrophobic residues generated a band aligned at a slight angle to the helical axis. This result is in accord with the postulated coiled-coil structure of the crystalline regions of alpha-keratin.


1988 ◽  
Vol 8 (1) ◽  
pp. 486-493
Author(s):  
R Lersch ◽  
E Fuchs

We report here the cDNA and amino acid sequences of a human 58-kilodalton type II keratin, K5, which is coexpressed with a 50-kilodalton type I keratin partner, K14, in stratified squamous epithelia. Using a probe specific for the 3'-noncoding portion of this K5 cDNA, we demonstrated the existence of a single human gene encoding this sequence. Using Northern (RNA) blot analysis and in situ hybridization with cRNA probes for both K5 and K14, we examined the expression of these mRNAs in the epidermis and in cultured epidermal cells. Our results indicate that the mRNAs for K5 and K14 are coordinately expressed and abundant in the basal layer of the epidermis. As cells undergo a commitment to terminally differentiate, the expression of both mRNAs seems to be downregulated.


1978 ◽  
Vol 173 (2) ◽  
pp. 373-385 ◽  
Author(s):  
K H Gough ◽  
A S Inglis ◽  
W G Crewther

The amino acid sequence of a type-I helical segment from the low-sulphur protein (S-carboxymethylkerateine-A) of wool was determined by combining automatic and manual-sequencing data. Whereas in the type-II helical segment most of the cationic groups occur in pairs, 11 of the 22 anionic residues in the sequence of the type-I segment were situated next to a second anionic residue. This suggests possible interactions between type-I and type-II helical segments in alpha-keratin. As observed with the sequence of a type-II helical segment a model constructed on 3.6 residues per turn of helix shows a line of hydrophobic residues along the helix, thereby supporting the physicochemical evidence that the molecule is predominantly helical and forms part of a coiled-coil structure. Examination of the sequence data by predictive methods indicates the possibilty of extensive sections of alpha-helix interspersed with discontinuities. The molecule contains a number of regions with peptide sequences identical with those found by other workers after enzymic digestion of fractions from oxidized wool.


Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3719-3729 ◽  
Author(s):  
Katrijn Bockstael ◽  
Nick Geukens ◽  
Lieve Van Mellaert ◽  
Piet Herdewijn ◽  
Jozef Anné ◽  
...  

The development of antibacterial resistance is inevitable and is a major concern in hospitals and communities. Moreover, biofilm-grown bacteria are less sensitive to antimicrobial treatment. In this respect, the Gram-positive Staphylococcus epidermidis is an important source of nosocomial biofilm-associated infections. In the search for new antibacterial therapies, the type I signal peptidase (SPase I) serves as a potential target for development of antibacterials with a novel mode of action. This enzyme cleaves off the signal peptide from secreted proteins, making it essential for protein secretion, and hence for bacterial cell viability. S. epidermidis encodes three putative SPases I (denoted Sip1, Sip2 and Sip3), of which Sip1 lacks the catalytic lysine. In this report, we investigated the active S. epidermidis SPases I in more detail. Sip2 and Sip3 were found to complement a temperature-sensitive Escherichia coli lepB mutant, demonstrating their in vivo functional activity. In vitro functional activity of purified Sip2 and Sip3 proteins and inhibition of their activity by the SPase I inhibitor arylomycin A2 were further illustrated using a fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we demonstrated that SPase I not only is an attractive target for development of novel antibacterials against free-living bacteria, but also is a feasible target for biofilm-associated infections.


1988 ◽  
Vol 8 (1) ◽  
pp. 486-493 ◽  
Author(s):  
R Lersch ◽  
E Fuchs

We report here the cDNA and amino acid sequences of a human 58-kilodalton type II keratin, K5, which is coexpressed with a 50-kilodalton type I keratin partner, K14, in stratified squamous epithelia. Using a probe specific for the 3'-noncoding portion of this K5 cDNA, we demonstrated the existence of a single human gene encoding this sequence. Using Northern (RNA) blot analysis and in situ hybridization with cRNA probes for both K5 and K14, we examined the expression of these mRNAs in the epidermis and in cultured epidermal cells. Our results indicate that the mRNAs for K5 and K14 are coordinately expressed and abundant in the basal layer of the epidermis. As cells undergo a commitment to terminally differentiate, the expression of both mRNAs seems to be downregulated.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Kristina Behnke ◽  
Ursula R. Sorg ◽  
Helmut E. Gabbert ◽  
Klaus Pfeffer

Lymphotoxinβreceptor (LTβR) signaling plays an important role in efficient initiation of host responses to a variety of pathogens, encompassing viruses, bacteria, and protozoans via induction of the type I interferon response. The present study reveals that afterToxoplasma gondiiinfection, LTβR−/−mice show a substantially reduced survival rate when compared to wild-type mice. LTβR−/−mice exhibit an increased parasite load and a more pronounced organ pathology. Also, a delayed increase of serum IL-12p40 and a failure of the protective IFNγresponse in LTβR−/−mice were observed. Serum NO levels in LTβR−/−animals rose later and were markedly decreased compared to wild-type animals. At the transcriptional level, LTβR−/−animals exhibited a deregulated expression profile of several cytokines known to play a role in activation of innate immunity inT. gondiiinfection. Importantly, expression of the IFNγ-regulated murine guanylate-binding protein (mGBP) genes was virtually absent in the lungs of LTβR−/−mice. This demonstrates clearly that the LTβR is essential for the induction of a type II IFN-mediated immune response againstT. gondii. The pronounced inability to effectively upregulate host defense effector molecules such as GBPs explains the high mortality rates of LTβR−/−animals afterT. gondiiinfection.


1993 ◽  
Vol 121 (4) ◽  
pp. 743-750 ◽  
Author(s):  
S High ◽  
S S Andersen ◽  
D Görlich ◽  
E Hartmann ◽  
S Prehn ◽  
...  

We have identified membrane components which are adjacent to type I and type II signal-anchor proteins during their insertion into the membrane of the ER. Using two different cross-linking approaches a 37-38-kD nonglycosylated protein, previously identified as P37 (High, S., D. Görlich, M. Wiedmann, T. A. Rapoport, and B. Dobberstein. 1991. J. Cell Biol. 113:35-44), was found adjacent to all the membrane inserted nascent chains used in this study. On the basis of immunoprecipitation, this ER protein was shown to be identical to the recently identified mammalian Sec61 protein. Thus, Sec61p is the principal cross-linking partner of both type I and type II signal-anchor proteins during their membrane insertion (this work), and of secretory proteins during their translocation (Görlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. Cell. 71:489-503). We propose that membrane proteins of both orientations, and secretory proteins employ the same ER translocation sites, and that Sec61p is a core component of these sites.


Sign in / Sign up

Export Citation Format

Share Document