scholarly journals Sequence and expression of a type II keratin, K5, in human epidermal cells.

1988 ◽  
Vol 8 (1) ◽  
pp. 486-493 ◽  
Author(s):  
R Lersch ◽  
E Fuchs

We report here the cDNA and amino acid sequences of a human 58-kilodalton type II keratin, K5, which is coexpressed with a 50-kilodalton type I keratin partner, K14, in stratified squamous epithelia. Using a probe specific for the 3'-noncoding portion of this K5 cDNA, we demonstrated the existence of a single human gene encoding this sequence. Using Northern (RNA) blot analysis and in situ hybridization with cRNA probes for both K5 and K14, we examined the expression of these mRNAs in the epidermis and in cultured epidermal cells. Our results indicate that the mRNAs for K5 and K14 are coordinately expressed and abundant in the basal layer of the epidermis. As cells undergo a commitment to terminally differentiate, the expression of both mRNAs seems to be downregulated.

1988 ◽  
Vol 8 (1) ◽  
pp. 486-493
Author(s):  
R Lersch ◽  
E Fuchs

We report here the cDNA and amino acid sequences of a human 58-kilodalton type II keratin, K5, which is coexpressed with a 50-kilodalton type I keratin partner, K14, in stratified squamous epithelia. Using a probe specific for the 3'-noncoding portion of this K5 cDNA, we demonstrated the existence of a single human gene encoding this sequence. Using Northern (RNA) blot analysis and in situ hybridization with cRNA probes for both K5 and K14, we examined the expression of these mRNAs in the epidermis and in cultured epidermal cells. Our results indicate that the mRNAs for K5 and K14 are coordinately expressed and abundant in the basal layer of the epidermis. As cells undergo a commitment to terminally differentiate, the expression of both mRNAs seems to be downregulated.


1986 ◽  
Vol 103 (6) ◽  
pp. 2583-2591 ◽  
Author(s):  
M Rentrop ◽  
B Knapp ◽  
H Winter ◽  
J Schweizer

The tongue of the adult mouse is covered by a multilayered squamous epithelium which is continuous on the ventral surface, however interrupted on the dorsal surface by many filiform and few fungiform papillae. The filiform papillae themselves are subdivided into an anterior and posterior unit exhibiting different forms of keratinization. Thus, the entire epithelium shows a pronounced morphological diversity of well recognizable tissue units. We have used a highly sensitive in situ hybridization technique to investigate the differential expression of keratin mRNAs in the tongue epithelium. The hybridization probes used were cDNA restriction fragments complementary to the most specific 3'-regions of any given keratin mRNA. We could show that independent of the morphologically different tongue regions, all basal cells uniformly express the mRNA of a type I 52-kD keratin, typical also for basal cells of the epidermis. Immediately above the homogenous basal layer a vertically oriented specialization of the keratin expression occurs within the morphological tissue units. Thus the dorsal interpapillary and ventral epithelium express the mRNAs of a type II 57-kD and a type I 47-kD keratin pair. In contrast, in the anterior unit of the filiform papillae, only the 47-kD mRNA is present, indicating that this keratin may be coexpressed in tongue epithelium with different type II partners. In suprabasal cells of both, the fungiform papillae and the posterior unit of the filiform papillae, a mRNA of a type I 59-kD keratin could be detected; however, its type II 67-kD epidermal counterpart seems not to be present in these cells. Most surprisingly, in distinct cells of both types of papillae, a type I 50-kD keratin mRNA could be localized which usually is associated with epidermal hyperproliferation. In conclusion, the in situ hybridization technique applied has been proved to be a powerful method for detailed studies of differentiation processes, especially in morphologically complex epithelia.


Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 111-118 ◽  
Author(s):  
C.J. Devlin ◽  
P.M. Brickell ◽  
E.R. Taylor ◽  
A. Hornbruch ◽  
R.K. Craig ◽  
...  

During limb development, type I collagen disappears from the region where cartilage develops and synthesis of type II collagen, which is characteristic of cartilage, begins. In situ hybridization using antisense RNA probes was used to investigate the spatial localization of type I and type II collagen mRNAs. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen synthesis, suggesting control at the level of transcription and mRNA accumulation. In contrast, the pattern of mRNA for type I collagen remained more or less uniform and did not correspond with the synthesis of the protein, suggesting control primarily at the level of translation or of RNA processing.


1996 ◽  
Vol 73 (4) ◽  
pp. 297-299 ◽  
Author(s):  
S. Malaney ◽  
H.H.Q. Heng ◽  
L.C. Tsui ◽  
X.M. Shi ◽  
B.H. Robinson

2006 ◽  
Vol 189 (2) ◽  
pp. 336-341 ◽  
Author(s):  
M. Sayeedur Rahman ◽  
Shane M. Ceraul ◽  
Sheila M. Dreher-Lesnick ◽  
Magda S. Beier ◽  
Abdu F. Azad

ABSTRACT Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.


1986 ◽  
Vol 6 (2) ◽  
pp. 539-548 ◽  
Author(s):  
A RayChaudhury ◽  
D Marchuk ◽  
M Lindhurst ◽  
E Fuchs

We have isolated and subcloned three separate segments of human DNA which share strong sequence homology with a previously sequenced gene encoding a type I keratin, K14 (50 kilodaltons). Restriction endonuclease mapping has demonstrated that these three genes are tightly linked chromosomally, whereas the K14 gene appears to be separate. As judged by positive hybridization-translation and Northern blot analyses, the central linked gene encodes a keratin, K17, which is expressed in abundance with K14 and two other type I keratins in cultured human epidermal cells. None of these other epidermal keratin mRNAs appears to be generated from the K17 gene through differential splicing of its transcript. The sequence of the K17 gene reveals striking homologies not only with the coding portions and intron positions of the K14 gene, but also with its 5'-noncoding and 5'-upstream sequences. These similarities may provide an important clue in elucidating the molecular mechanisms underlying the coexpression of the two genes.


2014 ◽  
Vol 922 ◽  
pp. 260-263 ◽  
Author(s):  
Masatoshi Ii ◽  
Masaki Tahara ◽  
Hideki Hosoda ◽  
Shuichi Miyazaki ◽  
Tomonari Inamura

The preferred morphology of self-accommodation (SA) microstructure in a Ti-Nb-Al shape memory alloy was investigated by the evaluation of the frequency distribution of the habit plane variant (HPV) clusters using in-situ optical microscopy. The observed HPV clusters were classified into two different types; one is the cluster connected by the {111}o type I twin (Type I) and the other is connected by the <211>o type II twin (Type II). The total fractions of the Type I and Type II clusters were 52% and 48%, respectively. The incompatibility at junction planes (JPs) of the two clusters was almost the same among these clusters. However, most of the larger martensite plates (> 50μm) formed Type I cluster at the later stage of the reverse martensitic transformation, i.e., at the early stage of the forward transformation upon cooling. The ratio of the fraction of Type I and II is almost 2:1 at the early stage of the forward transformation.


2007 ◽  
Vol 56 (6) ◽  
pp. 715-721 ◽  
Author(s):  
Hsi Liu ◽  
Berta Rodes ◽  
Robert George ◽  
Bret Steiner

The acidic repeat protein (arp) genes from three subspecies of the treponeme Treponema pallidum (T. pallidum subsp. pallidum, Nichols strain; T. pallidum subsp. pertenue, CDC-1 and CDC-2 strains; and T. pallidum subsp. endemicum, Bosnia A strain) were cloned and sequenced. The predicted protein sequence contained a high percentage of glutamic acid, hence the name acidic repeat protein, or Arp. The protein had a potential membrane-spanning domain and a signal peptidase I site. The gene from the Nichols strain of T. pallidum subsp. pallidum contained a set of 14 nearly identical repeats of a 60 bp sequence, which occupied ∼51 % of the length of the gene. Analyses of arp from laboratory strains showed that the 5′ and 3′ ends of the genes were conserved, but there was considerable heterogeneity in the number of repeats of this 60 bp sequence. Based on amino acid variations, the 14 sequence repeats could be classified into three types, which were named type I, type II and type III repeats. The type II repeat was the most common in the strains examined. The arp gene of the Nichols strain was subsequently cloned into the expression vector pBAD/TOPO ThioFusion. The expressed protein was detected in a Western blot assay using rabbit immune sera produced against T. pallidum, or synthetic peptides derived from the repeat sequences. Using an ELISA, rapid plasma reagin (RPR) test-positive sera reacted with synthetic peptides derived from the repeat region but not with peptides derived from N and C termini of the Arp protein. These results show that the Arp protein is immunogenic and could prove to be a useful target for serological diagnosis of T. pallidum infection.


1978 ◽  
Vol 173 (2) ◽  
pp. 365-371 ◽  
Author(s):  
W G Crewther ◽  
A S Inglis ◽  
N M McKern

1. The helical fragments obtained by partial chymotryptic digestion of S-carboxymethylkeratine-A, the low-sulphur fraction from wool, were fractionated into type-I and type-II helical segments in aqueous urea under conditions limiting carbamoylation. 2. The amino acid sequence of a 109-residue type-II segment was completed by using the sequenator. 3. When the data were incorporated into a helical model of 3.6 residues per turn the hydrophobic residues generated a band aligned at a slight angle to the helical axis. This result is in accord with the postulated coiled-coil structure of the crystalline regions of alpha-keratin.


Sign in / Sign up

Export Citation Format

Share Document