scholarly journals Regulation of Bacterial Cell Division: Genetic and Phenotypic Analysis of Temperature-Sensitive, Multinucleate, Filament-Forming Mutants of Escherichia coli

1974 ◽  
Vol 117 (3) ◽  
pp. 978-986 ◽  
Author(s):  
Jane Smith Allen ◽  
Camille C. Filip ◽  
Ralph A. Gustafson ◽  
Robert G. Allen ◽  
James R. Walker
2007 ◽  
Vol 90 (2-3) ◽  
pp. 59-72 ◽  
Author(s):  
Medhatm Khattar ◽  
Issmat I. Kassem ◽  
Ziad W. El-Hajj

In 1993, William Donachie wrote “The success of molecular genetics in the study of bacterial cell division has been so great that we find ourselves, armed with much greater knowledge of detail, confronted once again with the same naive questions that we set to answer in the first place”1. Indeed, attempts to answer the apparently simple question of how a bacterial cell divides have led to a wealth of new knowledge, in particular over the past decade and a half. And while some questions have been answered to a great extent since the early reports of isolation of division mutants of Escherichia coli2,3, some key pieces of the puzzle remain elusive. In addition to it being a fundamental process in bacteria that merits investigation in its own right, studying the process of cell division offers an abundance of new targets for the development of new antibacterial compounds that act directly against key division proteins and other components of the cytoskeleton, which are encoded by the morphogenes of E. coli4. This review aims to present the reader with a snapshot summary of the key players in E. coli morphogenesis with emphasis on cell division and the rod to sphere transition.


EcoSal Plus ◽  
2021 ◽  
Author(s):  
Petra Anne Levin ◽  
Anuradha Janakiraman

Decades of research, much of it in Escherichia coli , have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings.


2015 ◽  
Vol 112 (36) ◽  
pp. 11347-11352 ◽  
Author(s):  
Atsushi Yahashiri ◽  
Matthew A. Jorgenson ◽  
David S. Weiss

Bacterial SPOR domains bind peptidoglycan (PG) and are thought to target proteins to the cell division site by binding to “denuded” glycan strands that lack stem peptides, but uncertainties remain, in part because septal-specific binding has yet to be studied in a purified system. Here we show that fusions of GFP to SPOR domains from theEscherichia colicell-division proteins DamX, DedD, FtsN, and RlpA all localize to septal regions of purified PG sacculi obtained fromE.coliandBacillus subtilis. Treatment of sacculi with an amidase that removes stem peptides enhanced SPOR domain binding, whereas treatment with a lytic transglycosylase that removes denuded glycans reduced SPOR domain binding. These findings demonstrate unequivocally that SPOR domains localize by binding to septal PG, that the physiologically relevant binding site is indeed a denuded glycan, and that denuded glycans are enriched in septal PG rather than distributed uniformly around the sacculus. Accumulation of denuded glycans in the septal PG of bothE.coliandB.subtilis, organisms separated by 1 billion years of evolution, suggests that sequential removal of stem peptides followed by degradation of the glycan backbone is an ancient feature of PG turnover during bacterial cell division. Linking SPOR domain localization to the abundance of a structure (denuded glycans) present only transiently during biogenesis of septal PG provides a mechanism for coordinating the function of SPOR domain proteins with the progress of cell division.


2016 ◽  
Vol 198 (11) ◽  
pp. 1683-1693 ◽  
Author(s):  
Elyse J. Roach ◽  
Charles Wroblewski ◽  
Laura Seidel ◽  
Alison M. Berezuk ◽  
Dyanne Brewer ◽  
...  

ABSTRACTBacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associatedproteins (Zap) for stability throughout the process of division. InEscherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure ofEscherichia coliZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Usingin vitroFtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments.IMPORTANCEZ-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins inE. colithat associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure ofE. coliZapD and identify residues that are critical for FtsZ bundling. Together, these results advance our understanding about the formation and dynamics of the Z-ring prior to bacterial cell division.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 235 ◽  
Author(s):  
Marcin Krupka ◽  
William Margolin

To generate two cells from one, bacteria such asEscherichia coliuse a complex of membrane-embedded proteins called the divisome that synthesize the division septum. The initial stage of cytokinesis requires a tubulin homolog, FtsZ, which forms polymers that treadmill around the cell circumference. The attachment of these polymers to the cytoplasmic membrane requires an actin homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ. Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric state inE. colito control the progression of cytokinesis, including the recruitment of septum synthesis proteins. In this review, we focus on recent advances in our understanding of protein-protein association between FtsZ and FtsA in the initial stages of divisome function, mainly in the well-characterizedE. colisystem.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Atsushi Yahashiri ◽  
Jill T. Babor ◽  
Ariel L. Anwar ◽  
Ryan P. Bezy ◽  
Evan W. Piette ◽  
...  

ABSTRACT We report that the small Escherichia coli membrane protein DrpB (formerly YedR) is involved in cell division. We discovered DrpB in a screen for multicopy suppressors of a ΔftsEX mutation that prevents divisome assembly when cells are plated on low ionic strength medium, such as lysogeny broth without NaCl. Characterization of DrpB revealed that (i) translation initiates at an ATG annotated as codon 22 rather than the GTG annotated as codon 1, (ii) DrpB localizes to the septal ring when cells are grown in medium of low ionic strength but localization is greatly reduced in medium of high ionic strength, (iii) overproduction of DrpB in a ΔftsEX mutant background improves recruitment of the septal peptidoglycan synthase FtsI, implying multicopy suppression works by rescuing septal ring assembly, (iv) a ΔdrpB mutant divides quite normally, but a ΔdrpB ΔdedD double mutant has a strong division and viability defect, albeit only in medium of high ionic strength, and (v) DrpB homologs are found in E. coli and a few closely related enteric bacteria, but not outside this group. In sum, DrpB is a poorly conserved nonessential division protein that improves the efficiency of cytokinesis under suboptimal conditions. Proteins like DrpB are likely to be a widespread feature of the bacterial cell division apparatus, but they are easily overlooked because mutants lack obvious shape defects. IMPORTANCE A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli.


2020 ◽  
Vol 16 (2) ◽  
pp. 169-175
Author(s):  
Ratish C. Mishra ◽  
Rosy Kumari ◽  
Shivani Yadav ◽  
Jaya P. Yadav

Background: Staphylococus epidermidis coagulase negative and gram positive streptococci have emerged as major nosocomial pathogens associated with the infection of implanted medical devices and dandruff on human scalp. S. epidermidis filamenting temperature-sensitive mutant Z (FtsZ) gene encoded FtsZ protein that assembles at future bacterial cell division site that forms Z-ring structure. FtsZ is a tubulin homolog protein with low sequence similarity; this makes it possible to inhibit bacterial FtsZ protein without affecting the eukaryote cell division. Objective: In the present study, phytochemicals of Cinnamomum zeylanicum, Punica granatum and Glycyrrhiza glabra were virtually screened for their antibacterial activity against Staphylococcus epidermidis cell division protein, FtsZ. Methods: Molecular docking method was used to investigate new lead inhibitor against bacterial cell division protein FtsZ. SwissADME and ProTox tool were used to evaluate the toxicity of the lead molecule. Results: Molecular docking based screening confirmed that among 122 phytochemicals, β- sitosterol and glabrol showed the highest inhibitory activity against FtsZ. SwissADME tool showed β-sitosterol and glabrol as the ideal antibacterial agents. Conclusion: Structure based drug design strategy has been broadly used to optimize antimicrobial activity of small molecule/ligand against large protein receptor of disease, causing pathogens which gives a major breakthrough in pharmaceuticals industries. The molecular docking and SwissADME tool showed that β-sitosterol and glabrol may be developed to be potential topical and sublingual antibacterial agents, respectively.


Sign in / Sign up

Export Citation Format

Share Document