scholarly journals Opposing Roles of the Staphylococcus aureus Virulence Regulators, Agr and Sar, in Triton X-100- and Penicillin-Induced Autolysis

1998 ◽  
Vol 180 (14) ◽  
pp. 3724-3726 ◽  
Author(s):  
David F. Fujimoto ◽  
Kenneth W. Bayles

ABSTRACT The regulation of murein hydrolases is a critical aspect of peptidoglycan growth and metabolism. In the present study, we demonstrate that mutations within the Staphylococcus aureusvirulence factor regulatory genes, agr and sar, affect autolysis, resulting in decreased and increased autolysis rates, respectively. Zymographic analyses of these mutant strains suggest thatagr and sar exert their effects on autolysis, in part, by modulating murein hydrolase expression and/or activity.

Chemotherapy ◽  
2017 ◽  
Vol 63 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Jing Ouyang ◽  
Fengjun Sun ◽  
Wei Feng ◽  
Yonghong Xie ◽  
Lijuan Ren ◽  
...  

Backgroud: Antibiotic treatment for infections caused by vancomycin-intermediate Staphylococcus aureus (VISA) strains is challenging, and only a few effective and curative methods have been developed to combat these strains. This study aimed to investigate the antimicrobial activity of galangin against S. aureus and its effects on the murein hydrolases of VISA strain Mu50. This is the first report on these effects of galangin, and it may help to improve the treatment for VISA infections by demonstrating the effective use of galangin. Methods: Firstly, the minimum inhibitory concentration (MIC) and growth curve were used to investigate the antimicrobial activity of galangin against S. aureus. Secondly, transmission electron microscopy (TEM) was used to observe morphological changes of VISA strain Mu50. Thirdly, Triton X-100-induced autolysis and cell wall hydrolysis assays were performed to determine the activities of the murein hydrolases of Mu50. Finally, fluorescence real-time quantitative PCR was used to investigate the expression of the murein hydrolase-related Mu50 genes. Results: The results indicated that the MIC of galangin was 32 μg/mL against ATCC25293, N315, and Mu50, and galangin could significantly suppress the bacterial growth (p < 0.05) with concentrations of 4, 8 and 16 μg/mL, compared with control group (0 μg/mL). To explore the possible reasons of bacteriostatic effects of galangin, we observed morphological changes using TEM which showed that the division of Mu50 daughter cells treated with galangin was obviously inhibited. Considering the vital role of murein hydrolases in cellular division, assays were performed, and galangin markedly decreased Triton X-100-induced autolysis and cell wall hydrolysis. Galangin also significantly inhibited the expression of the murein hydrolase genes (atl, lytM, and lytN) and their regulatory genes (cidR, cidA, and cidB). Conclusions: Our findings indicated that galangin can effectively inhibit murein hydrolase activity as well as the growth of VISA strain Mu50.


2003 ◽  
Vol 47 (6) ◽  
pp. 2036-2039 ◽  
Author(s):  
Susan Boyle-Vavra ◽  
Mamatha Challapalli ◽  
Robert S. Daum

ABSTRACT Four clinical U.S. glycopeptide intermediate resistant Staphylococcus aureus (GISA) isolates were resistant to Triton X-100-induced autolysis. Similar resistance was demonstrated in an isolate obtained after a single passage of a susceptible clinical isolate in low-level vancomycin. Strains with the vancomycin-induced Triton X-100 resistance phenotype produced active murein hydrolases but were resistant to lysis by murein hydrolases.


2000 ◽  
Vol 182 (11) ◽  
pp. 3197-3203 ◽  
Author(s):  
Peter J. McNamara ◽  
Kathy C. Milligan-Monroe ◽  
Shirin Khalili ◽  
Richard A. Proctor

ABSTRACT A chromosomal insertion of transposon Tn917 partially restores the expression of protease and alpha-toxin activities to PM466, a genetically defined agr-null derivative of the wild-type Staphylococcus aureus strain RN6390. In co-transduction experiments, transposon-encoded erythromycin resistance and a protease- and alpha-toxin-positive phenotype are transferred at high frequency from mutant strains to agr-null strains ofS. aureus. Southern analysis of chromosomal DNA and sequence analysis of DNA flanking the Tn917 insertion site in mutant strains revealed that the transposon interrupted a 498-bp open reading frame (ORF). Similarity searches using a conceptual translation of the ORF identified a region of homology to the known staphylococcal global regulators AgrA and SarA. To verify that the mutant allele conferred the observed phenotype, a wild-type allele of the mutant gene was introduced into the genome of a mutant strain by homologous recombination. The resulting isolates had a restoredagr-null phenotype. Virulence factor gene expression in mutant, restored mutant, and wild-type strains was quantified by measuring alpha-toxin activity in culture supernatant fluids and by Northern analysis of the alpha-toxin transcript. We named this ORFrot (for repressor of toxins) (GenBank accession no.AF189239 ) because of the activity associated withrot::Tn917 mutant strains.


2010 ◽  
Vol 54 (8) ◽  
pp. 3079-3085 ◽  
Author(s):  
Soo-Jin Yang ◽  
Cynthia C. Nast ◽  
Nagendra N. Mishra ◽  
Michael R. Yeaman ◽  
Paul D. Fey ◽  
...  

ABSTRACT The mechanism(s) of daptomycin (DAP) resistance (DAPr) is incompletely defined. Thickened cell walls (CWs) acting as either a mechanical barrier or an affinity trap for DAP have been purported to be a major contributor to the DAPr phenotype. To this end, we studied an isogenic set of methicillin-resistant Staphylococcus aureus (MRSA) isolates (pulsotype USA 300) from the bloodstream of a DAP-treated patient with endocarditis in which serial strains exhibited increasing DAPr. Of interest, the DAPr isolate differed from its parental strain in several parameters, including acquisition of a point mutation within the putative synthase domain of the mprF gene in association with enhanced mprF expression, increased synthesis of lysyl-phosphotidylglycerol, an enhanced positive envelope charge, and reduced DAP surface binding. Transmission electron microscopy (TEM) revealed no significant increases in CW thickness in the two DAPr isolates (MRSA 11/21 and REF2145) compared with that in the DAP-susceptible (DAPs) parental strain, MRSA 11/11. The rates of Triton X-100-induced autolysis were also identical for the strain set. Furthermore, among six additional clinically isolated DAPs/DAPr S. aureus strain pairs, only three DAPr isolates exhibited CWs significantly thicker than those of the respective DAPs parent. These data confirm that CW thickening is neither universal to DAPr S. aureus nor sufficient to yield the DAPr phenotype among S. aureus strains.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Vijay Aswani ◽  
Fares Najar ◽  
Madhulatha Pantrangi ◽  
Bob Mau ◽  
William R. Schwan ◽  
...  

Microbiology ◽  
2005 ◽  
Vol 151 (6) ◽  
pp. 1789-1800 ◽  
Author(s):  
Niamh Harraghy ◽  
Jan Kormanec ◽  
Christiane Wolz ◽  
Dagmar Homerova ◽  
Christiane Goerke ◽  
...  

Eap and Emp are two Staphylococcus aureus adhesins initially described as extracellular matrix binding proteins. Eap has since emerged as being important in adherence to and invasion of eukaryotic cells, as well as being described as an immunomodulator and virulence factor in chronic infections. This paper describes the mapping of the transcription start point of the eap and emp promoters. Moreover, using reporter-gene assays and real-time PCR in defined regulatory mutants, environmental conditions and global regulators affecting expression of eap and emp were investigated. Marked differences were found in expression of eap and emp between strain Newman and the 8325 derivatives SH1000 and 8325-4. Moreover, both genes were repressed in the presence of glucose. Analysis of expression of both genes in various regulatory mutants revealed that sarA and agr were involved in their regulation, but the data suggested that there were additional regulators of both genes. In a sae mutant, expression of both genes was severely repressed. sae expression was also reduced in the presence of glucose, suggesting that repression of eap and emp in glucose-containing medium may, in part, be a consequence of a decrease in expression of sae.


1986 ◽  
Vol 6 (12) ◽  
pp. 4353-4361
Author(s):  
S Alexander ◽  
A M Cibulsky ◽  
S D Cuneo

Mutant strains of Dictyostelium discoideum carrying dis mutations fail to transcribe specifically the family of developmentally regulated discoidin lectin genes during morphogenesis. The phenotypes of these mutants strongly suggested that the mutations reside in regulatory genes. Using these mutant strains, we showed that multiple regulatory genes are required for the expression of the lectin structural genes and that these regulatory genes (the dis+ alleles) act in trans to regulate this gene family. These regulatory genes fall into two complementation groups (disA and disB) and map to linkage groups II and III, respectively. A further regulatory locus was defined by the identification of an unlinked supressor gene, drsA (discoidin restoring), which is epistatic to disB, but not disA, and results in the restoration of lectin expression in cells carrying the disB mutation. Mutant cells carrying the drsA allele express the discoidin lectin gene family during growth and development, in contrast to wild-type cells which express it only during development. Therefore, the suppressor activity of the drsA allele appears to function by making the expression of the discoidin lectins constitutive and no longer strictly developmentally regulated. The data indicate that normal expression of the discoidin lectins is dependent on the sequential action of the disB+, drsA+, and disA+ gene products. Thus, we described an interacting network of regulatory genes which in turn controls the developmental expression of a family of genes during the morphogenesis of D. discoideum.


2018 ◽  
Vol 61 (23) ◽  
pp. 10473-10487 ◽  
Author(s):  
Pushpak Mizar ◽  
Rekha Arya ◽  
Truc Kim ◽  
Soyoung Cha ◽  
Kyoung-Seok Ryu ◽  
...  

2019 ◽  
Author(s):  
Trevor Kane ◽  
Katelyn E. Carothers ◽  
Yunjuan Bao ◽  
Won-Sik Yeo ◽  
Taeok Bae ◽  
...  

AbstractBackgroundStaphylococcus aureus (S. aureus) is a major human pathogen owing to its arsenal of virulence factors, as well as its acquisition of multi-antibiotic resistance. Here we report the identification of a Streptolysin S (SLS) like biosynthetic gene cluster in a highly virulent community-acquired methicillin resistant S. aureus (MRSA) isolate, JKD6159. Examination of the SLS-like gene cluster in JKD6159 shows significant homology and gene organization to the SLS-associated biosynthetic gene (sag) cluster responsible for the production of the major hemolysin SLS in Group A Streptococcus.ResultsWe took a comprehensive approach to elucidating the putative role of the sag gene cluster in JKD6159 by constructing a mutant in which one of the biosynthesis genes (sagB homologue) was deleted in the parent JKD6159 strain. Assays to evaluate bacterial gene regulation, biofilm formation, antimicrobial activity, as well as complete host cell response profile and comparative in vivo infections in Balb/Cj mice were conducted.ConclusionsAlthough no significant phenotypic changes were observed in our assays, we postulate that the SLS-like toxin produced by this strain of S. aureus may be a highly specialized virulence factor utilized in specific environments for selective advantage; studies to better understand the role of this newly discovered virulence factor in S. aureus warrant further investigation.


1999 ◽  
Vol 67 (5) ◽  
pp. 2060-2070 ◽  
Author(s):  
Steffen Porwollik ◽  
Brian Noonan ◽  
Paul W. O’Toole

ABSTRACT Motility of Helicobacter species has been shown to be essential for successful colonization of the host. We have investigated the organization of a flagellar export locus in Helicobacter pylori. A 7-kb fragment of the H. pylori CCUG 17874 genome was cloned and sequenced, revealing an operon comprising an open reading frame of unknown function (ORF03), essential housekeeping genes (ileS and murB), flagellar export genes (fliI and fliQ), and a homolog to a gene implicated in virulence factor transport in other pathogens (virB11). A promoter for this operon, showing similarity to the Escherichia coli ς70 consensus, was identified by primer extension. Cotranscription of the genes in the operon was demonstrated by reverse transcription-PCR, and transcription of virB11, fliI, fliQ, andmurB was detected in human or mouse biopsies obtained from infected hosts. The genetic organization of this locus was conserved in a panel of H. pylori clinical isolates. EngineeredfliI and fliQ mutant strains were completely aflagellate and nonmotile, whereas a virB11 mutant still produced flagella. The fliI and fliQ mutant strains produced reduced levels of flagellin and the hook protein FlgE. Production of OMP4, a member of the outer membrane protein family identified in H. pylori 26695, was reduced in both thevirB11 mutant and the fliI mutant, suggesting related functions of the virulence factor export protein (VirB11) and the flagellar export component (FliI).


Sign in / Sign up

Export Citation Format

Share Document