scholarly journals Mutant Forms of Salmonella typhimuriumς54 Defective in Transcription Initiation but Not Promoter Binding Activity

1999 ◽  
Vol 181 (11) ◽  
pp. 3351-3357 ◽  
Author(s):  
Mary T. Kelly ◽  
Timothy R. Hoover

ABSTRACT Transcription initiation with ς54-RNA polymerase holoenzyme (ς54-holoenzyme) has absolute requirements for an activator protein and ATP hydrolysis. ς54’s binding to core RNA polymerase and promoter DNA has been well studied, but little is known about its role in the subsequent steps of transcription initiation. Following random mutagenesis, we isolated eight mutant forms of Salmonella typhimurium ς54 that were deficient in transcription initiation but still directed ς54-holoenzyme to the promoter to form a closed complex. Four of these mutant proteins had amino acid substitutions in region I, which had been shown previously to be required for ς54-holoenzyme to respond to the activator. From the remaining mutants, we identified four residues in region III which when altered affect the function of ς54 at some point after closed-complex formation. These results suggest that in addition to its role in core and DNA binding, region III participates in one or more steps of transcription initiation that follow closed-complex formation.

2000 ◽  
Vol 182 (22) ◽  
pp. 6503-6508 ◽  
Author(s):  
Mary T. Kelly ◽  
John A. Ferguson ◽  
Timothy R. Hoover

ABSTRACT Transcription by ς54-RNA polymerase holoenzyme requires an activator that catalyzes isomerization of the closed promoter complex to an open complex. We examined mutant forms ofSalmonella enterica serovar Typhimurium ς54that were defective in transcription initiation but retained core RNA polymerase- and promoter-binding activities. Four of the mutant proteins allowed activator-independent transcription from a heteroduplex DNA template. One of these mutant proteins, L124P V148A, had substitutions in a sequence that had not been shown previously to participate in the prevention of activator-independent transcription. The remaining mutants did not allow efficient activator-independent transcription from the heteroduplex DNA template and had substitutions within a conserved 20-amino-acid segment (Leu-179 to Leu-199), suggesting a role for this sequence in transcription initiation.


2006 ◽  
Vol 73 ◽  
pp. 1-10 ◽  
Author(s):  
Nora S. Miroslavova ◽  
Stephen J.W. Busby

Bacterial RNA polymerase holoenzyme carries different determinants that contact different promoter DNA sequence elements. These contacts are essential for the recognition of promoters prior to transcript initiation. Here, we have investigated how active promoters can be built from different combinations of elements. Our results show that the contribution of different contacts to promoter activity is critically dependent on the overall promoter context, and that certain combinations of contacts can hinder transcription initiation.


1990 ◽  
Vol 270 (1) ◽  
pp. 141-148 ◽  
Author(s):  
B Chan ◽  
A Spassky ◽  
S Busby

Transcription initiation at the Escherichia coli galP1 promoter does not depend on specific nucleotide sequences in the -35 region. Footprint analysis of transcriptionally competent complexes between E. coli RNA polymerase and DNA fragments carrying galP1 shows that RNA polymerase protects sequences as far upstream as -55, whereas sequences around the -35 region are exposed. In contrast, with galP1 derivatives carrying -35 region sequences resembling the consensus, RNA polymerase protects bases as far as -45, and the -35 region is fully protected. Taken together, our data suggest that the overall architecture of RNA polymerase-promoter complexes can vary according to whether or not consensus -35 region sequences are present; in the absence of these sequences, open complex formation requires distortion of the promoter DNA. However, the unwinding of promoter DNA around the transcription start is not affected by the nature of the -35 region sequence. With a galP1 derivative carrying point mutations in the spacer region that greatly reduce promoter activity, the protection of bases by RNA polymerase around the -10 sequence and transcription start site is reduced. In contrast, protection of the region upstream of -25 is unaffected by the spacer mutations, although sequences from -46 to -54 become hypersensitive to attack by potassium permanganate, indicating severe distortion or kinking of this zone. We suggest that, with this galP1 derivative, RNA polymerase is blocked in a complex that is an intermediate on the path to open complex formation.


1993 ◽  
Vol 294 (1) ◽  
pp. 43-47 ◽  
Author(s):  
B Y Chang ◽  
R H Doi

By the use of a partial proteolysis method and Western-blot analysis, the conformational properties of Bacillus subtilis sigma A factor in the transcription initiation stage were studied. From a comparison of the trypsin-digestion patterns of free sigma A and of sigma A associated with core enzyme, it was found that the production of 45 kDa sigma A tryptic-derived fragment was enhanced when sigma A was associated with the core enzyme. More importantly, a 40 kDa sigma A tryptic-derived fragment was found exclusively in this associated state. Based on the change of the digestion kinetics when producing the 45 kDa tryptic fragment and the generation of this new 40 kDa tryptic fragment from sigma A, it was apparent that a conformation change of sigma A occurred during the association of sigma A with the core enzyme. Also, similar patterns were found for the sigma A present in the holoenzyme-promoter DNA complex. These findings suggest that no further distinctive conformational change of sigma A occurs at the step of RNA polymerase holoenzyme and promoter DNA complex formation. Trypsin-digestion patterns of sigma A in different RNA polymerase holoenzyme and promoter DNA complexes were also studied. The presence of similar trypsin digestion-patterns of sigma A in those complexes strongly supports the idea that a similar sigma A conformation is used in the recognition of different sigma A-type promoters and the formation of different open complexes.


2003 ◽  
Vol 50 (4) ◽  
pp. 909-920 ◽  
Author(s):  
Iwona K Kolasa ◽  
Tomasz Łoziński ◽  
Kazimierz L Wierzchowski

A-tracts in DNA due to their structural morphology distinctly different from the canonical B-DNA form play an important role in specific recognition of bacterial upstream promoter elements by the carboxyl terminal domain of RNA polymerase alpha subunit and, in turn, in the process of transcription initiation. They are only rarely found in the spacer promoter regions separating the -35 and -10 recognition hexamers. At present, the nature of the protein-DNA contacts formed between RNA polymerase and promoter DNA in transcription initiation can only be inferred from low resolution structural data and mutational and crosslinking experiments. To probe these contacts further, we constructed derivatives of a model Pa promoter bearing in the spacer region one or two An (n = 5 or 6) tracts, in phase with the DNA helical repeat, and studied the effects of thereby induced perturbation of promoter DNA structure on the kinetics of open complex (RPo) formation in vitro by Escherichia coli RNA polymerase. We found that the overall second-order rate constant ka of RPo formation, relative to that at the control promoter, was strongly reduced by one to two orders of magnitude only when the A-tracts were located in the nontemplate strand. A particularly strong 30-fold down effect on ka was exerted by nontemplate A-tracts in the -10 extended promoter region, where an involvement of nontemplate TG (-14, -15) sequence in a specific interaction with region 3 of sigma-subunit is postulated. A-tracts in the latter location caused also 3-fold slower isomerization of the first closed transcription complex into the intermediate one that precedes formation of RPo, and led to two-fold faster dissociation of the latter. All these findings are discussed in relation to recent structural and kinetic models of RPo formation.


1983 ◽  
Vol 3 (12) ◽  
pp. 2172-2179
Author(s):  
H Ernst ◽  
W Filipowicz ◽  
A J Shatkin

Transcription of cloned adenovirus, beta-globin, and retrovirus long terminal repeat DNAs in HeLa whole-cell lysate was inhibited by S-adenosylhomocysteine. However, full-length 1.7-kilobase transcripts made on adenovirus 2 late promoter DNA contained 5'-terminal GpppA, consistent with specific initiation and runoff synthesis in the absence of product methylation. Formation of runoff transcripts including retrovirus RNAs that normally contain 5'-m7GpppGmpC was not decreased by replacing GTP with non-hydrolyzable analogs, and Rous-associated virus-2 runoff products made in the presence of GTP-gamma-S contained 5'-terminal gamma-S-pppGpC. The results indicate that capping and specific transcript synthesis by RNA polymerase II are not obligatorily linked in HeLa whole-cell lysate. Accurate initiation is dependent on ATP hydrolysis, and in contrast to GTP, replacement of ATP by 5'-adenylyl-imidodiphosphate blocked specific initiation of transcripts that start with either GTP (Rous-associated virus-2, Rous-associated virus-0) or ATP (beta-globin, adenovirus).


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung-Hoon Jun ◽  
Jaekyung Hyun ◽  
Jeong Seok Cha ◽  
Hoyoung Kim ◽  
Michael S. Bartlett ◽  
...  

AbstractOpening of the DNA binding cleft of cellular RNA polymerase (RNAP) is necessary for transcription initiation but the underlying molecular mechanism is not known. Here, we report on the cryo-electron microscopy structures of the RNAP, RNAP-TFEα binary, and RNAP-TFEα-promoter DNA ternary complexes from archaea, Thermococcus kodakarensis (Tko). The structures reveal that TFEα bridges the RNAP clamp and stalk domains to open the DNA binding cleft. Positioning of promoter DNA into the cleft closes it while maintaining the TFEα interactions with the RNAP mobile modules. The structures and photo-crosslinking results also suggest that the conserved aromatic residue in the extended winged-helix domain of TFEα interacts with promoter DNA to stabilize the transcription bubble. This study provides a structural basis for the functions of TFEα and elucidates the mechanism by which the DNA binding cleft is opened during transcription initiation in the stalk-containing RNAPs, including archaeal and eukaryotic RNAPs.


2019 ◽  
Vol 47 (13) ◽  
pp. 6685-6698 ◽  
Author(s):  
Drake Jensen ◽  
Ana Ruiz Manzano ◽  
Jayan Rammohan ◽  
Christina L Stallings ◽  
Eric A Galburt

Abstract The pathogen Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, enacts unique transcriptional regulatory mechanisms when subjected to host-derived stresses. Initiation of transcription by the Mycobacterial RNA polymerase (RNAP) has previously been shown to exhibit different open complex kinetics and stabilities relative to Escherichia coli (Eco) RNAP. However, transcription initiation rates also depend on the kinetics following open complex formation such as initial nucleotide incorporation and subsequent promoter escape. Here, using a real-time fluorescence assay, we present the first in-depth kinetic analysis of initial transcription and promoter escape for the Mtb RNAP. We show that in relation to Eco RNAP, Mtb displays slower initial nucleotide incorporation but faster overall promoter escape kinetics on the Mtb rrnAP3 promoter. Furthermore, in the context of the essential transcription factors CarD and RbpA, Mtb promoter escape is slowed via differential effects on initially transcribing complexes. Finally, based on their ability to increase the rate of open complex formation and decrease the rate of promoter escape, we suggest that CarD and RbpA are capable of activation or repression depending on the rate-limiting step of a given promoter's basal initiation kinetics.


Sign in / Sign up

Export Citation Format

Share Document