scholarly journals Regulation of pelD and pelE, Encoding Major Alkaline Pectate Lyases in Erwinia chrysanthemi: Involvement of the Main Transcriptional Factors

1999 ◽  
Vol 181 (19) ◽  
pp. 5948-5957 ◽  
Author(s):  
Carine Rouanet ◽  
Kinya Nomura ◽  
Shinji Tsuyumu ◽  
William Nasser

ABSTRACT The main virulence factors of the phytopathogenic bacteriumErwinia chrysanthemi are pectinases which attack pectin, the major constituent of the plant cell wall. Of these enzymes, the alkaline isoenzyme named PelD in strain 3937 and PelE in strain EC16 has been described as being particularly important, based on virulence studies of plants. Expression of the pelD andpelE genes is tightly modulated by various regulators, including the KdgR repressor and the cyclic AMP-cyclic AMP receptor protein (CRP) activator complex. The use of a lacZ reporter gene allowed us to quantify the repression of E. chrysanthemi 3937 pelD expression exerted by PecS, another repressor of pectinase synthesis. In vitro DNA-protein interaction experiments, centered on the pelD andpelE wild-type or pelE mutated promoter regions, allowed us to define precisely the sequences involved in the binding of these three regulators and of RNA polymerase (RNAP). These studies revealed an unusual binding of the KdgR repressor and suggested the presence of a UP (upstream) element in the pelD andpelE genes. Investigation of the simultaneous binding of CRP, KdgR, PecS, and the RNAP to the regulatory region of thepelD and pelE genes showed that (i) CRP and RNAP bind cooperatively, (ii) PecS partially inhibits binding of the CRP activator and of the CRP-RNAP complex, and (iii) KdgR stabilizes the binding of PecS and prevents transcriptional initiation by RNAP. Taken together, our data suggest that PecS attenuates pelDand pelE expression rather than acting as a true repressor like KdgR. Overall, control of the pelD andpelE genes of E. chrysanthemi appears to be both complex and novel.

1989 ◽  
Vol 9 (11) ◽  
pp. 4835-4845
Author(s):  
S J Anderson ◽  
S Miyake ◽  
D Y Loh

We identified a regulatory region of the murine V beta promoter by both in vivo and in vitro analyses. The results of transient transfection assays indicated that the dominant transcription-activating element within the V beta 8.3 promoter is the palindromic motif identified previously as the conserved V beta decamer. Elimination of this element, by linear deletion or specific mutation, reduced transcriptional activity from this promoter by 10-fold. DNase I footprinting, gel mobility shift, and methylation interference assays confirmed that the palindrome acts as the binding site of a specific nuclear factor. In particular, the V beta promoter motif functioned in vitro as a high-affinity site for a previously characterized transcription activator, ATF. A consensus cyclic AMP response element (CRE) but not a consensus AP-1 site, can substitute for the decamer in vivo. These data suggest that cyclic AMP response element-binding protein (ATF/CREB) or related proteins activate V beta transcription.


2008 ◽  
Vol 76 (5) ◽  
pp. 2227-2234 ◽  
Author(s):  
Debbie M. Hunt ◽  
José W. Saldanha ◽  
John F. Brennan ◽  
Pearline Benjamin ◽  
Molly Strom ◽  
...  

ABSTRACT Single nucleotide polymorphisms (SNPs) are present in the global transcriptional regulator cyclic AMP (cAMP) receptor protein (CRP) of the attenuated vaccine strain Mycobacterium bovis, bacillus Calmette-Guérin (BCG). We have found that these SNPs resulted in small but significant changes in the expression of a number of genes in M. tuberculosis when a deletion of the Rv3676 CRP was complemented by the BCG allele, compared to complementation by the M. tuberculosis allele. We can explain these changes in gene expression by modeling the structure of the mycobacterial protein on the known structure of CRP from Escherichia coli. Thus, the SNP change in the DNA-binding domain, Lys178, is predicted to form a hydrogen bond with the phosphate backbone of the DNA, as does the equivalent residue in E. coli, whereas Glu178 in M. tuberculosis/M. bovis does not, thus explaining the stronger binding reported for CRP of BCG to CRP-binding sites in mycobacterial DNA. In contrast, the SNP change in the nucleotide binding domain (Leu47Pro) is predicted to result in the loss of one hydrogen bond, which is accommodated by the structure, and would not therefore be expected to cause any change in function relating to cAMP binding. The BCG allele fully complemented the growth defect caused by the deletion of the Rv3676 protein in M. tuberculosis, both in vitro and in macrophage and mouse infections, suggesting that these SNPs do not play any role in the attenuation of BCG. However, they may have allowed BCG to grow better under the in vitro-selective conditions used in its derivation from the M. bovis wild type.


2005 ◽  
Vol 18 (11) ◽  
pp. 1205-1214 ◽  
Author(s):  
William Nasser ◽  
Sylvie Reverchon ◽  
Regine Vedel ◽  
Martine Boccara

Erwinia chrysanthemi strain 3937 is a necrotrophic bacterial plant pathogen. Pectinolytic enzymes and, in particular, pectate lyases play a key role in soft rot symptoms; however, the efficient colonization of plants by E. chrysanthemi requires additional factors. These factors include HrpN (harpin), a heat-stable, glycine-rich hydrophilic protein, which is secreted by the type III secretion system. We investigated the expression of hrpN in E. chrysanthemi 3937 in various environmental conditions and different regulatory backgrounds. Using lacZ fusions, hrpN expression was markedly influenced by the carbon source, osmolarity, growth phase, and growth substrate. hrpN was repressed when pectinolysis started and negatively regulated by the repressors of ectate lyase synthesis, PecS and PecT. Primer extension data and in vitro DNA-protein interaction experiments support a model whereby PecS represses hrpN expression by binding to the hrpN regulatory region and inhibiting transcript elongation. The results suggest coordinated regulation of HrpN and pectate lyases by PecS and PecT. A putative model of the synthesis of these two virulence factors in E. chrysanthemi during pathogenesis is presented.


2003 ◽  
Vol 185 (17) ◽  
pp. 5148-5157 ◽  
Author(s):  
Christine M. Beatty ◽  
Douglas F. Browning ◽  
Stephen J. W. Busby ◽  
Alan J. Wolfe

ABSTRACT The cyclic AMP receptor protein (CRP) activates transcription of the Escherichia coli acs gene, which encodes an acetate-scavenging enzyme required for fitness during periods of carbon starvation. Two promoters direct transcription of acs, the distal acsP1 and the proximal acsP2. In this study, we demonstrated that acsP2 can function as the major promoter and showed by in vitro studies that CRP facilitates transcription by “focusing” RNA polymerase to acsP2. We proposed that CRP activates transcription from acsP2 by a synergistic class III mechanism. Consistent with this proposal, we showed that CRP binds two sites, CRP I and CRP II. Induction of acs expression absolutely required CRP I, while optimal expression required both CRP I and CRP II. The locations of these DNA sites for CRP (centered at positions −69.5 and −122.5, respectively) suggest that CRP interacts with RNA polymerase through class I interactions. In support of this hypothesis, we demonstrated that acs transcription requires the surfaces of CRP and the C-terminal domain of the α subunit of RNA polymerase holoenzyme (α-CTD), which is known to participate in class I interactions: activating region 1 of CRP and the 287, 265, and 261 determinants of the α-CTD. Other surface-exposed residues in the α-CTD contributed to acs transcription, suggesting that the α-CTD may interact with at least one protein other than CRP.


2005 ◽  
Vol 187 (22) ◽  
pp. 7795-7804 ◽  
Author(s):  
Guangchun Bai ◽  
Lee Ann McCue ◽  
Kathleen A. McDonough

ABSTRACT Little is known about cyclic AMP (cAMP) function in Mycobacterium tuberculosis, despite its ability to encode 15 adenylate cyclases and 10 cNMP-binding proteins. M. tuberculosis Rv3676, which we have designated CRPMt, is predicted to be a cAMP-dependent transcription factor. In this study, we characterized CRPMt's interactions with DNA and cAMP, using experimental and computational approaches. We used Gibbs sampling to define a CRPMt DNA motif that resembles the cAMP receptor protein (CRP) binding motif model for Escherichia coli. CRPMt binding sites were identified in a total of 73 promoter regions regulating 114 genes in the M. tuberculosis genome, which are being explored as a regulon. Specific CRPMt binding caused DNA bending, and the substitution of highly conserved nucleotides in the binding site resulted in a complete loss of binding to CRPMt. cAMP enhanced CRPMt's ability to bind DNA and caused allosteric alterations in CRPMt conformation. These results provide the first direct evidence for cAMP binding to a transcription factor in M. tuberculosis, suggesting a role for cAMP signal transduction in M. tuberculosis and implicating CRPMt as a cAMP-responsive global regulator.


1988 ◽  
Vol 253 (3) ◽  
pp. 809-818 ◽  
Author(s):  
K Gaston ◽  
B Chan ◽  
A Kolb ◽  
J Fox ◽  
S Busby

Gene manipulation techniques have been used to alter the binding site for the cyclic AMP-cyclic AMP receptor protein complex (cAMP-CRP) at the regulatory region of the Escherichia coli galactose (gal) operon. The effects of these changes on CRP-dependent stimulation of expression from the galP1 promoter in vivo have been measured, and gel binding assays have been used to measure the affinity of cAMP-CRP for the modified sites. Firstly we have deleted progressively longer sequences from upstream of the gal CRP site in order to locate the functional limit of the site. A deletion to -49, removing the first base that corresponds to the consensus sequence for a CRP binding site, is sufficient to reduce CRP binding and block CRP-dependent stimulation of P1. Secondly, we used synthetic oligonucleotides to invert the asymmetric nucleotide sequence at the gal CRP binding site or to make the sequence symmetric. Inversion of the site has little effect on CRP binding, the architecture of open complexes at P1 revealed by DNAase I footprinting, or the stimulation of transcription from P1. Making the site symmetric increases the affinity for CRP by over 50-fold and leads to increased transcription from P1, whilst hardly altering the DNAase I footprint of open complexes. Our results confirm that the strength of binding of CRP depends on the nature of the site and show that it is this that principally accounts for differences in CRP-dependent stimulation of transcription.


1989 ◽  
Vol 261 (2) ◽  
pp. 649-653 ◽  
Author(s):  
K Gaston ◽  
A Kolb ◽  
S Busby

Binding of the Escherichia coli CRP protein to DNA fragments carrying nucleotide sequences closely corresponding to the consensus is very tight with a dissociation time of over 2 h in our conditions. The concentration of cyclic AMP required for this binding is below the physiological range of intracellular cyclic AMP concentrations. Changes in nucleotide sequence at positions that are not well-conserved between different naturally-occurring CRP sites allow a more rapid dissociation of CRP-DNA complexes. There is an inverse correlation between the stability of CRP binding to sites in vitro and the repression by glucose of expression dependent on these sites in vivo: expression that is dependent on the tighter binding sites cannot be repressed by the inclusion of glucose in the growth medium.


1989 ◽  
Vol 9 (11) ◽  
pp. 4835-4845 ◽  
Author(s):  
S J Anderson ◽  
S Miyake ◽  
D Y Loh

We identified a regulatory region of the murine V beta promoter by both in vivo and in vitro analyses. The results of transient transfection assays indicated that the dominant transcription-activating element within the V beta 8.3 promoter is the palindromic motif identified previously as the conserved V beta decamer. Elimination of this element, by linear deletion or specific mutation, reduced transcriptional activity from this promoter by 10-fold. DNase I footprinting, gel mobility shift, and methylation interference assays confirmed that the palindrome acts as the binding site of a specific nuclear factor. In particular, the V beta promoter motif functioned in vitro as a high-affinity site for a previously characterized transcription activator, ATF. A consensus cyclic AMP response element (CRE) but not a consensus AP-1 site, can substitute for the decamer in vivo. These data suggest that cyclic AMP response element-binding protein (ATF/CREB) or related proteins activate V beta transcription.


2007 ◽  
Vol 189 (19) ◽  
pp. 6891-6900 ◽  
Author(s):  
Katja Bettenbrock ◽  
Thomas Sauter ◽  
Knut Jahreis ◽  
Andreas Kremling ◽  
Joseph W. Lengeler ◽  
...  

ABSTRACT In Escherichia coli K-12, components of the phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) represent a signal transduction system involved in the global control of carbon catabolism through inducer exclusion mediated by phosphoenolpyruvate-dependent protein kinase enzyme IIACrr (EIIACrr) (= EIIAGlc) and catabolite repression mediated by the global regulator cyclic AMP (cAMP)-cAMP receptor protein (CRP). We measured in a systematic way the relation between cellular growth rates and the key parameters of catabolite repression, i.e., the phosphorylated EIIACrr (EIIACrr∼P) level and the cAMP level, using in vitro and in vivo assays. Different growth rates were obtained by using either various carbon sources or by growing the cells with limited concentrations of glucose, sucrose, and mannitol in continuous bioreactor experiments. The ratio of EIIACrr to EIIACrr∼P and the intracellular cAMP concentrations, deduced from the activity of a cAMP-CRP-dependent promoter, correlated well with specific growth rates between 0.3 h−1 and 0.7 h−1, corresponding to generation times of about 138 and 60 min, respectively. Below and above this range, these parameters were increasingly uncoupled from the growth rate, which perhaps indicates an increasing role executed by other global control systems, in particular the stringent-relaxed response system.


Sign in / Sign up

Export Citation Format

Share Document