scholarly journals Gonococcal MinD Affects Cell Division inNeisseria gonorrhoeae and Escherichia coli and Exhibits a Novel Self-Interaction

2001 ◽  
Vol 183 (21) ◽  
pp. 6253-6264 ◽  
Author(s):  
Jason Szeto ◽  
Sandra Ramirez-Arcos ◽  
Claude Raymond ◽  
Leslie D. Hicks ◽  
Cyril M. Kay ◽  
...  

ABSTRACT The Min proteins are involved in determining cell division sites in bacteria and have been studied extensively in rod-shaped bacteria. We have recently shown that the gram-negative coccus Neisseria gonorrhoeae contains a min operon, and the present study investigates the role of minD from this operon. A gonococcal minD insertional mutant, CJSD1, was constructed and exhibited both grossly abnormal cell division and morphology as well as altered cell viability. Western blot analysis verified the absence of MinD from N. gonorrhoeae(MinDNg) in this mutant. Hence, MinDNg is required for maintaining proper cell division and growth in N. gonorrhoeae. Immunoblotting of soluble and insoluble gonococcal cell fractions revealed that MinDNg is both cytosolic and associated with the insoluble membrane fraction. The joint overexpression of MinCNg and MinDNg from a shuttle vector resulted in a significant enlargement of gonococcal cells, while cells transformed with plasmids encoding either MinCNg or MinDNg alone did not display noticeable morphological changes. These studies suggest that MinDNg is involved in inhibiting gonococcal cell division, likely in conjunction with MinCNg. The alignment of MinD sequences from various bacteria showed that the proteins are highly conserved and share several regions of identity, including a conserved ATP-binding cassette. The overexpression of MinDNg in wild-type Escherichia coli led to cell filamentation, while overexpression in an E. coli minD mutant restored a wild-type morphology to the majority of cells; therefore, gonococcal MinD is functional across species. Yeast two-hybrid studies and gel-filtration and sedimentation equilibrium analyses of purified His-tagged MinDNg revealed a novel MinDNgself-interaction. We have also shown by yeast two-hybrid analysis that MinD from E. coli interacts with itself and with MinDNg. These results indicate that MinDNg is required for maintaining proper cell division and growth in N. gonorrhoeae and suggests that the self-interaction of MinD may be important for cell division site selection across species.

2000 ◽  
Vol 182 (22) ◽  
pp. 6366-6373 ◽  
Author(s):  
Lucía Yim ◽  
Guy Vandenbussche ◽  
Jesús Mingorance ◽  
Sonsoles Rueda ◽  
Mercedes Casanova ◽  
...  

ABSTRACT The role of the carboxy terminus of the Escherichia coli cell division protein FtsA in bacterial division has been studied by making a series of short sequential deletions spanning from residue 394 to 420. Deletions as short as 5 residues destroy the biological function of the protein. Residue W415 is essential for the localization of the protein into septal rings. Overexpression of theftsA alleles harboring these deletions caused a coiled cell phenotype previously described for another carboxy-terminal mutation (Gayda et al., J. Bacteriol. 174:5362–5370, 1992), suggesting that an interaction of FtsA with itself might play a role in its function. The existence of such an interaction was demonstrated using the yeast two-hybrid system and a protein overlay assay. Even these short deletions are sufficient for impairing the interaction of the truncated FtsA forms with the wild-type protein in the yeast two-hybrid system. The existence of additional interactions between FtsA molecules, involving other domains, can be postulated from the interaction properties shown by the FtsA deletion mutant forms, because although unable to interact with the wild-type and with FtsAΔ1, they can interact with themselves and cross-interact with each other. The secondary structures of an extensive deletion, FtsAΔ27, and the wild-type protein are indistinguishable when analyzed by Fourier transform infrared spectroscopy, and moreover, FtsAΔ27 retains the ability to bind ATP. These results indicate that deletion of the carboxy-terminal 27 residues does not alter substantially the structure of the protein and suggest that the loss of biological function of the carboxy-terminal deletion mutants might be related to the modification of their interacting properties.


2008 ◽  
Vol 191 (1) ◽  
pp. 333-346 ◽  
Author(s):  
Gouzel Karimova ◽  
Carine Robichon ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.


2004 ◽  
Vol 186 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Kari L. Schmidt ◽  
Nicholas D. Peterson ◽  
Ryan J. Kustusch ◽  
Mark C. Wissel ◽  
Becky Graham ◽  
...  

ABSTRACT FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.


2004 ◽  
Vol 186 (20) ◽  
pp. 6728-6737 ◽  
Author(s):  
Astrid Ursinus ◽  
Fusinita van den Ent ◽  
Sonja Brechtel ◽  
Miguel de Pedro ◽  
Joachim-Volker Höltje ◽  
...  

ABSTRACT The binding of the essential cell division protein FtsN of Escherichia coli to the murein (peptidoglycan) sacculus was studied. Soluble truncated variants of FtsN, including the complete periplasmic part of the protein as well as a variant containing only the C-terminal 77 amino acids, did bind to purified murein sacculi isolated from wild-type cells. FtsN variants lacking this C-terminal region showed reduced or no binding to murein. Binding of FtsN was severely reduced when tested against sacculi isolated either from filamentous cells with blocked cell division or from chain-forming cells of a triple amidase mutant. Binding experiments with radioactively labeled murein digestion products revealed that the longer murein glycan strands (>25 disaccharide units) showed a specific affinity to FtsN, but neither muropeptides, peptides, nor short glycan fragments bound to FtsN. In vivo FtsN could be cross-linked to murein with the soluble disulfide bridge containing cross-linker DTSSP. Less FtsN, but similar amounts of OmpA, was cross-linked to murein of filamentous or of chain-forming cells compared to levels in wild-type cells. Expression of truncated FtsN variants in cells depleted in full-length FtsN revealed that the presence of the C-terminal murein-binding domain was not required for cell division under laboratory conditions. FtsN was present in 3,000 to 6,000 copies per cell in exponentially growing wild-type E. coli MC1061. We discuss the possibilities that the binding of FtsN to murein during cell division might either stabilize the septal region or might have a function unrelated to cell division.


2013 ◽  
Vol 87 (23) ◽  
pp. 12745-12755 ◽  
Author(s):  
Sonja Blasche ◽  
Stefan Wuchty ◽  
Seesandra V. Rajagopala ◽  
Peter Uetz

Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its hostEscherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between theE. colitranscriptional network and lambda proteins. Targeted host proteins and genes required for lambda infection are enriched among highly connected proteins, suggesting that bacteriophages resemble interaction patterns of human viruses. Lambda tail proteins interact with both bacterial fimbrial proteins andE. coliproteins homologous to other phage proteins. Lambda appears to dramatically differ from other phages, such as T7, because of its unusually large number of modified and processed proteins, which reduces the number of host-virus interactions detectable by yeast two-hybrid screens.


2016 ◽  
Vol 198 (11) ◽  
pp. 1683-1693 ◽  
Author(s):  
Elyse J. Roach ◽  
Charles Wroblewski ◽  
Laura Seidel ◽  
Alison M. Berezuk ◽  
Dyanne Brewer ◽  
...  

ABSTRACTBacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associatedproteins (Zap) for stability throughout the process of division. InEscherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure ofEscherichia coliZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Usingin vitroFtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments.IMPORTANCEZ-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins inE. colithat associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure ofE. coliZapD and identify residues that are critical for FtsZ bundling. Together, these results advance our understanding about the formation and dynamics of the Z-ring prior to bacterial cell division.


1999 ◽  
Vol 181 (18) ◽  
pp. 5855-5859 ◽  
Author(s):  
Umender K. Sharma ◽  
Sudha Ravishankar ◽  
Radha Krishan Shandil ◽  
P. V. K. Praveen ◽  
T. S. Balganesh

ABSTRACT The interaction of T4 phage-encoded anti-sigma factor, asiA, andEscherichia coli ς70 was studied by using the yeast two-hybrid system. Truncation of ς70 to identify the minimum region involved in the interaction showed that the fragment containing amino acid residues proximal to the C terminus (residues 547 to 603) was sufficient for complexing to asiA. Studies also indicated that some of the truncated C-terminal fragments (residues 493 to 613) had higher affinity for asiA as judged by the increased β-galactosidase activity. It is proposed that the observed higher affinity may be due to the unmasking of the binding region of asiA on the sigma protein. Advantage was taken of the increased affinity of truncated ς70 fragments to asiA in designing a coexpression system wherein the toxicity of asiA expression in E. coli could be neutralized and the complex of truncated ς70 and asiA could be expressed in large quantities and purified.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dev K. Ranjit ◽  
George W. Liechti ◽  
Anthony T. Maurelli

ABSTRACT Cell division is the ultimate process for the propagation of bacteria, and FtsZ is an essential protein used by nearly all bacteria for this function. Chlamydiae belong to a small group of bacteria that lack the universal cell division protein FtsZ but still divide by binary fission. Chlamydial MreB is a member of the shape-determining MreB/Mbl family of proteins responsible for rod shape morphology in Escherichia coli. Chlamydia also encodes a homolog of RodZ, an MreB assembly cytoskeletal protein that links MreB to cell wall synthesis proteins. We hypothesized that MreB directs cell division in Chlamydia and that chlamydial MreB could replace FtsZ function for cell division in E. coli. Overexpression of chlamydial mreB-rodZ in E. coli induced prominent morphological changes with production of large swollen or oval bacteria, eventually resulting in bacterial lysis. Low-level expression of chlamydial mreB-rodZ restored viability of a lethal ΔmreB mutation in E. coli, although the bacteria lost their typical rod shape and grew as rounded cells. When FtsZ activity was inhibited by overexpression of SulA in the ΔmreB mutant of E. coli complemented with chlamydial mreB-rodZ, spherical E. coli grew and divided. Localization studies using a fluorescent fusion chlamydial MreB protein indicated that chlamydial RodZ directs chlamydial MreB to the E. coli division septum. These results demonstrate that chlamydial MreB, in partnership with chlamydial RodZ, acts as a cell division protein. Our findings suggest that an mreB-rodZ-based mechanism allows Chlamydia to divide without the universal division protein FtsZ. IMPORTANCE The study of Chlamydia growth and cell division is complicated by its obligate intracellular nature and biphasic lifestyle. Chlamydia also lacks the universal division protein FtsZ. We employed the cell division system of Escherichia coli as a surrogate to identify chlamydial cell division proteins. We demonstrate that chlamydial MreB, together with chlamydial RodZ, forms a cell division and growth complex that can replace FtsZ activity and support cell division in E. coli. Chlamydial RodZ plays a major role in directing chlamydial MreB localization to the cell division site. It is likely that the evolution of chlamydial MreB and RodZ to form a functional cell division complex allowed Chlamydia to dispense with its FtsZ-based cell division machinery during genome reduction. Thus, MreB-RodZ represents a possible mechanism for cell division in other bacteria lacking FtsZ.


2010 ◽  
Vol 66 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Kanako Terakado ◽  
Atsushi Kodan ◽  
Hiroaki Nakano ◽  
Yasuhisa Kimura ◽  
Kazumitsu Ueda ◽  
...  

An MsbA deletion mutant ΔC21 that lacks the two C-terminal α-helices was expressed inEscherichia colistrain C41 and purified by metal-affinity and gel-filtration chromatography. Purified ΔC21 retained 26% of the activity of the wild-type ATPase and had a similar binding affinity to fluorescent nucleotide derivatives. Although crystals of wild-type MsbA complexed with adenosine 5′-(β,γ-imido)triphosphate could not be obtained, crystals of ΔC21 that diffracted to 4.5 Å resolution were obtained. The preliminary ΔC21 structure had the outward-facing conformation, in contrast to the previously reportedE. coliMsbA structure. This result suggests that deletion of the C-terminal α-helices may play a role in facilitating the outward-facing nucleotide-bound crystal structure of EcMsbA.


2001 ◽  
Vol 75 (1) ◽  
pp. 205-214 ◽  
Author(s):  
Yee-Ling Khu ◽  
Esther Koh ◽  
Siew Pheng Lim ◽  
Yin Hwee Tan ◽  
Sydney Brenner ◽  
...  

ABSTRACT Interaction between viral proteins is necessary for viral replication and viral particle assembly. We used the yeast two-hybrid assay to identify interactions among all the mature proteins of the hepatitis C virus. The interaction between NS3 and NS3 was one of the strongest viral protein-protein interactions detected. The minimal region required for this interaction was mapped to a specific subdomain of 174 amino acids in the N terminus of the helicase region. Random mutations in the minimal region were generated by PCR, and mutants that failed to interact with a wild-type minimal fragment were isolated using the yeast two-hybrid assay as a screen. Three of these mutations resulted in a reduction or a loss of interaction between helicases. Analytical gel filtration showed that in the presence of an oligonucleotide, wild-type helicases form dimers whereas the mutants remain mostly monomeric. All three mutants were partially or almost inactive when assayed for helicase activity in vitro. Mixing a mutant helicase (Y267S) with wild-type helicase did not dramatically affect helicase activity. These data indicate that dimerization of the helicase is important for helicase activity. The mutations that reduce self-association of the helicase may define the key residues involved in NS3-NS3 dimerization.


Sign in / Sign up

Export Citation Format

Share Document