scholarly journals Chlamydial MreB Directs Cell Division and Peptidoglycan Synthesis in Escherichia coli in the Absence of FtsZ Activity

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dev K. Ranjit ◽  
George W. Liechti ◽  
Anthony T. Maurelli

ABSTRACT Cell division is the ultimate process for the propagation of bacteria, and FtsZ is an essential protein used by nearly all bacteria for this function. Chlamydiae belong to a small group of bacteria that lack the universal cell division protein FtsZ but still divide by binary fission. Chlamydial MreB is a member of the shape-determining MreB/Mbl family of proteins responsible for rod shape morphology in Escherichia coli. Chlamydia also encodes a homolog of RodZ, an MreB assembly cytoskeletal protein that links MreB to cell wall synthesis proteins. We hypothesized that MreB directs cell division in Chlamydia and that chlamydial MreB could replace FtsZ function for cell division in E. coli. Overexpression of chlamydial mreB-rodZ in E. coli induced prominent morphological changes with production of large swollen or oval bacteria, eventually resulting in bacterial lysis. Low-level expression of chlamydial mreB-rodZ restored viability of a lethal ΔmreB mutation in E. coli, although the bacteria lost their typical rod shape and grew as rounded cells. When FtsZ activity was inhibited by overexpression of SulA in the ΔmreB mutant of E. coli complemented with chlamydial mreB-rodZ, spherical E. coli grew and divided. Localization studies using a fluorescent fusion chlamydial MreB protein indicated that chlamydial RodZ directs chlamydial MreB to the E. coli division septum. These results demonstrate that chlamydial MreB, in partnership with chlamydial RodZ, acts as a cell division protein. Our findings suggest that an mreB-rodZ-based mechanism allows Chlamydia to divide without the universal division protein FtsZ. IMPORTANCE The study of Chlamydia growth and cell division is complicated by its obligate intracellular nature and biphasic lifestyle. Chlamydia also lacks the universal division protein FtsZ. We employed the cell division system of Escherichia coli as a surrogate to identify chlamydial cell division proteins. We demonstrate that chlamydial MreB, together with chlamydial RodZ, forms a cell division and growth complex that can replace FtsZ activity and support cell division in E. coli. Chlamydial RodZ plays a major role in directing chlamydial MreB localization to the cell division site. It is likely that the evolution of chlamydial MreB and RodZ to form a functional cell division complex allowed Chlamydia to dispense with its FtsZ-based cell division machinery during genome reduction. Thus, MreB-RodZ represents a possible mechanism for cell division in other bacteria lacking FtsZ.

2015 ◽  
Vol 197 (8) ◽  
pp. 1507-1514 ◽  
Author(s):  
Ziad W. El-Hajj ◽  
Elaine B. Newman

ABSTRACTAlthoughEscherichia coliis a very small (1- to 2-μm) rod-shaped cell, here we describe anE. colimutant that forms enormously long cells in rich media such as Luria broth, as long indeed as 750 μm. Theseextremelyelongated (eel) cells are as long as the longest bacteria known and have no internal subdivisions. They are metabolically competent, elongate rapidly, synthesize DNA, and distribute cell contents along this length. They lack only the ability to divide. The concentration of the essential cell division protein FtsZ is reduced in these eel cells, and increasing this concentration restores division.IMPORTANCEEscherichia coliis usually a very small bacterium, 1 to 2 μm long. We have isolated a mutant that forms enormously long cells, 700 times longer than the usualE. colicell.E. colifilaments that form under other conditions usually die within a few hours, whereas our mutant is fully viable even when it reaches such lengths. This mutant provides a useful tool for the study of aspects ofE. coliphysiology that are difficult to investigate with small cells.


2002 ◽  
Vol 184 (4) ◽  
pp. 904-912 ◽  
Author(s):  
Keri L. N. Mercer ◽  
David S. Weiss

ABSTRACT The bacterial cell division protein FtsW has been suggested to perform two functions: stabilize the FtsZ cytokinetic ring, and facilitate septal peptidoglycan synthesis by the transpeptidase FtsI (penicillin-binding protein 3). We show here that depleting Escherichia coli cells of FtsW had little effect on the abundance of FtsZ rings but abrogated recruitment of FtsI to potential division sites. Analysis of FtsW localization confirmed and extended these results; septal localization of FtsW required FtsZ, FtsA, FtsQ, and FtsL but not FtsI. Thus, FtsW is a late recruit to the division site and is essential for subsequent recruitment of its cognate transpeptidase FtsI but not for stabilization of FtsZ rings. We suggest that a primary function of FtsW homologues—which are found in almost all bacteria and appear to work in conjunction with dedicated transpeptidases involved in division, elongation, or sporulation—is to recruit their cognate transpeptidases to the correct subcellular location.


2007 ◽  
Vol 189 (20) ◽  
pp. 7273-7280 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Carine Robichon ◽  
Gert Jan Haan ◽  
Tanneke den Blaauwen ◽  
Gregory Koningstein ◽  
...  

ABSTRACT The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.


2008 ◽  
Vol 191 (1) ◽  
pp. 333-346 ◽  
Author(s):  
Gouzel Karimova ◽  
Carine Robichon ◽  
Daniel Ladant

ABSTRACT Formation of the Escherichia coli division septum is catalyzed by a number of essential proteins (named Fts) that assemble into a ring-like structure at the future division site. Many of these Fts proteins are intrinsic transmembrane proteins whose functions are largely unknown. In the present study, we attempted to identify a novel putative component(s) of the E. coli cell division machinery by searching for proteins that could interact with known Fts proteins. To do that, we used a bacterial two-hybrid system based on interaction-mediated reconstitution of a cyclic AMP (cAMP) signaling cascade to perform a library screening in order to find putative partners of E. coli cell division protein FtsL. Here we report the characterization of YmgF, a 72-residue integral membrane protein of unknown function that was found to associate with many E. coli cell division proteins and to localize to the E. coli division septum in an FtsZ-, FtsA-, FtsQ-, and FtsN-dependent manner. Although YmgF was previously shown to be not essential for cell viability, we found that when overexpressed, YmgF was able to overcome the thermosensitive phenotype of the ftsQ1(Ts) mutation and restore its viability under low-osmolarity conditions. Our results suggest that YmgF might be a novel component of the E. coli cell division machinery.


2015 ◽  
Vol 81 (20) ◽  
pp. 7135-7142 ◽  
Author(s):  
Marie-Anne Tartanson ◽  
Laurence Soussan ◽  
Matthieu Rivallin ◽  
Sophie Pecastaings ◽  
Cristian V. Chis ◽  
...  

ABSTRACTThe bactericidal activity of an Al2O3-TiO2-Ag granular material against anEscherichia colistrain was confirmed by a culture-based method. In particular, 100% of microorganisms were permanently inactivated in 30 to 45 min. The present work aimed to investigate the mechanisms of the bactericidal action of this material and their dynamics onEscherichia coliusing different techniques. Observations by transmission electron microscopy (TEM) at different times of disinfection revealed morphological changes in the bacteria as soon as they were put in contact with the material. Notably highlighted were cell membrane damage; cytoplasm detachment; formation of vacuoles, possibly due to DNA condensation, in association with regions exhibiting different levels of electron density; and membrane lysis. PCR and flow cytometry analyses were used to confirm and quantify the observations of cell integrity. The direct exposure of cells to silver, combined with the oxidative stress induced by the reactive oxygen species (ROS) generated, was identified to be responsible for these morphological alterations. From the first 5 min of treatment with the Al2O3-TiO2-Ag material, 98% ofE. coliisolates were lysed. From 30 min, cell viability decreased to reach total inactivation, although approximately 1% of permeableE. colicells and 1% of intact cells (105genomic units · ml−1) were evidenced. This study demonstrates that the bactericidal effect of the material results from a synergic action of desorbed and supported silver. Supported silver was shown to generate the ROS evidenced.


2001 ◽  
Vol 183 (21) ◽  
pp. 6253-6264 ◽  
Author(s):  
Jason Szeto ◽  
Sandra Ramirez-Arcos ◽  
Claude Raymond ◽  
Leslie D. Hicks ◽  
Cyril M. Kay ◽  
...  

ABSTRACT The Min proteins are involved in determining cell division sites in bacteria and have been studied extensively in rod-shaped bacteria. We have recently shown that the gram-negative coccus Neisseria gonorrhoeae contains a min operon, and the present study investigates the role of minD from this operon. A gonococcal minD insertional mutant, CJSD1, was constructed and exhibited both grossly abnormal cell division and morphology as well as altered cell viability. Western blot analysis verified the absence of MinD from N. gonorrhoeae(MinDNg) in this mutant. Hence, MinDNg is required for maintaining proper cell division and growth in N. gonorrhoeae. Immunoblotting of soluble and insoluble gonococcal cell fractions revealed that MinDNg is both cytosolic and associated with the insoluble membrane fraction. The joint overexpression of MinCNg and MinDNg from a shuttle vector resulted in a significant enlargement of gonococcal cells, while cells transformed with plasmids encoding either MinCNg or MinDNg alone did not display noticeable morphological changes. These studies suggest that MinDNg is involved in inhibiting gonococcal cell division, likely in conjunction with MinCNg. The alignment of MinD sequences from various bacteria showed that the proteins are highly conserved and share several regions of identity, including a conserved ATP-binding cassette. The overexpression of MinDNg in wild-type Escherichia coli led to cell filamentation, while overexpression in an E. coli minD mutant restored a wild-type morphology to the majority of cells; therefore, gonococcal MinD is functional across species. Yeast two-hybrid studies and gel-filtration and sedimentation equilibrium analyses of purified His-tagged MinDNg revealed a novel MinDNgself-interaction. We have also shown by yeast two-hybrid analysis that MinD from E. coli interacts with itself and with MinDNg. These results indicate that MinDNg is required for maintaining proper cell division and growth in N. gonorrhoeae and suggests that the self-interaction of MinD may be important for cell division site selection across species.


2004 ◽  
Vol 186 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Kari L. Schmidt ◽  
Nicholas D. Peterson ◽  
Ryan J. Kustusch ◽  
Mark C. Wissel ◽  
Becky Graham ◽  
...  

ABSTRACT FtsE and FtsX have homology to the ABC transporter superfamily of proteins and appear to be widely conserved among bacteria. Early work implicated FtsEX in cell division in Escherichia coli, but this was subsequently challenged, in part because the division defects in ftsEX mutants are often salt remedial. Strain RG60 has an ftsE::kan null mutation that is polar onto ftsX. RG60 is mildly filamentous when grown in standard Luria-Bertani medium (LB), which contains 1% NaCl, but upon shift to LB with no NaCl growth and division stop. We found that FtsN localizes to potential division sites, albeit poorly, in RG60 grown in LB with 1% NaCl. We also found that in wild-type E. coli both FtsE and FtsX localize to the division site. Localization of FtsX was studied in detail and appeared to require FtsZ, FtsA, and ZipA, but not the downstream division proteins FtsK, FtsQ, FtsL, and FtsI. Consistent with this, in media lacking salt, FtsA and ZipA localized independently of FtsEX, but the downstream proteins did not. Finally, in the absence of salt, cells depleted of FtsEX stopped dividing before any change in growth rate (mass increase) was apparent. We conclude that FtsEX participates directly in the process of cell division and is important for assembly or stability of the septal ring, especially in salt-free media.


Sign in / Sign up

Export Citation Format

Share Document