scholarly journals TspO as a Modulator of the Repressor/Antirepressor (PpsR/AppA) Regulatory System in Rhodobacter sphaeroides 2.4.1

2001 ◽  
Vol 183 (21) ◽  
pp. 6355-6364 ◽  
Author(s):  
Xiaohua Zeng ◽  
Samuel Kaplan

ABSTRACT The TspO outer membrane protein of Rhodobacter sphaeroides has been shown to be involved in controlling the transcription of a number of genes which encode enzymes involved in photopigment biosynthesis and the puc operon. The display of regulated genes appears identical to those genes encompassing the PpsR/AppA repressor/antirepressor regulon, although the effect of TspO is modest relative to that of PpsR/AppA. To directly address the hypothesis that TspO is effective through the PpsR/AppA system, we constructed mutant strains with mutations in bothtspO and appA. In all cases, the phenotypes examined resembled those of the appA lesion by itself, leading us to conclude that TspO works through or modulates the PpsR/AppA system and acts upstream of the site of action of these regulatory proteins. In earlier publications, we had suggested that TspO is involved in the efflux of a certain intermediate(s) of the porphyrin biosynthesis pathway and that transcriptional regulation of target gene expression could be explained by the accumulation of a coactivator of AppA function. Although the data reported here do not precisely identify this coactivator, they lend support to this hypothesis. We discuss the importance of this form of gene control as the result of the recent extension of the TspO system toSinorhizobium meliloti, as described by Davey and de Bruijn (M. E. Davey and F. J. de Bruijn, Appl. Environ. Microbiol. 66:5353–5359, 2000). It is therefore possible that this system constitutes a more widely, although not universally, demonstrated form of gene regulation.

1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


2019 ◽  
Vol 7 (12) ◽  
pp. 671 ◽  
Author(s):  
Xin Nie ◽  
Bernhard Remes ◽  
Gabriele Klug

A multitude of biological functions relies on iron-sulfur clusters. The formation of photosynthetic complexes goes along with an additional demand for iron-sulfur clusters for bacteriochlorophyll synthesis and photosynthetic electron transport. However, photooxidative stress leads to the destruction of iron-sulfur clusters, and the released iron promotes the formation of further reactive oxygen species. A balanced regulation of iron-sulfur cluster synthesis is required to guarantee the supply of this cofactor, on the one hand, but also to limit stress, on the other hand. The phototrophic alpha-proteobacterium Rhodobacter sphaeroides harbors a large operon for iron-sulfur cluster assembly comprising the iscRS and suf genes. IscR (iron-sulfur cluster regulator) is an iron-dependent regulator of isc-suf genes and other genes with a role in iron metabolism. We applied reporter gene fusions to identify promoters of the isc-suf operon and studied their activity alone or in combination under different conditions. Gel-retardation assays showed the binding of regulatory proteins to individual promoters. Our results demonstrated that several promoters in a sense and antisense direction influenced isc-suf expression and the binding of the IscR, Irr, and OxyR regulatory proteins to individual promoters. These findings demonstrated a complex regulatory network of several promoters and regulatory proteins that helped to adjust iron-sulfur cluster assembly to changing conditions in Rhodobacter sphaeroides.


2000 ◽  
Vol 182 (12) ◽  
pp. 3475-3481 ◽  
Author(s):  
Jung Hyeob Roh ◽  
Samuel Kaplan

ABSTRACT Previously, we reported that rdxB, encoding a likely membrane-bound two [4Fe-4S]-containing center, is involved in the aerobic regulation of photosystem gene expression in Rhodobacter sphaeroides 2.4.1. To further investigate the role ofrdxB as well as other genes of the rdxBHISoperon on photosystem gene expression, we constructed a series of nonpolar, in-frame deletion mutations in each of the rdxgenes. Using both puc and puf operonlacZ fusions to monitor photosystem gene expression, under aerobic conditions, in each of the mutant strains revealed significant increased photosynthesis gene expression. In the case of mutations in either rdxH, rdxI, or rdxS, the aerobic induction of photosystem gene expression is believed to be indirect by virtue of a posttranscriptional effect oncbb 3 cytochrome oxidase structure and integrity. For RdxB, we suggest that this redox protein has a more direct effect on photosystem gene expression by virtue of its interaction with the cbb 3 oxidase. An associated phenotype, involving the enhanced conversion of the carotenoid spheroidene to spheroidenone, is also observed in the RdxB, -H, -I, and -S mutant strains. This phenotype is also suggested to be the result of the role of the rdxBHIS locus incbb 3 oxidase activity and/or structure. RdxI is suggested to be a new class of metal transporter of the CPx-type ATPases.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3471 ◽  
Author(s):  
Antje K. Heinrich ◽  
Merle Hirschmann ◽  
Nick Neubacher ◽  
Helge B. Bode

The Gram-negative bacteriaPhotorhabdusandXenorhabdusare known to produce a variety of different natural products (NP). These compounds play different roles since the bacteria live in symbiosis with nematodes and are pathogenic to insect larvae in the soil. Thus, a fine tuned regulatory system controlling NP biosynthesis is indispensable. Global regulators such as Hfq, Lrp, LeuO and HexA have been shown to influence NP production ofPhotorhabdusandXenorhabdus. Additionally, photopyrones as quorum sensing (QS) signals were demonstrated to be involved in the regulation of NP production inPhotorhabdus.In this study, we investigated the role of another possible QS signal, autoinducer-2 (AI-2), in regulation of NP production. The AI-2 synthase (LuxS) is widely distributed within the bacterial kingdom and has a dual role as a part of the activated methyl cycle pathway, as well as being responsible for AI-2 precursor production. We deletedluxSin three different entomopathogenic bacteria and compared NP levels in the mutant strains to the wild type (WT) but observed no difference to the WT strains. Furthermore, the absence of the small regulatory RNAmicA, which is encoded directly upstream ofluxS, did not influence NP levels. Phenotypic differences between theP. luminescens luxSdeletion mutant and an earlier describedluxSdeficient strain ofP. luminescenssuggested that two phenotypically different strains have evolved in different laboratories.


1998 ◽  
Vol 11 (12) ◽  
pp. 1186-1195 ◽  
Author(s):  
Ernö Kiss ◽  
Peter Mergaert ◽  
Boglàrka Olàh ◽  
Attila Kereszt ◽  
Christian Staehelin ◽  
...  

In Sinorhizobium meliloti the NolR repressor displays differential negative regulation of nodulation genes and is required for optimal nodulation. Here, we demonstrate that the NolR function is not unique to S. meliloti but is also present in other species of the Rhizobiaceae family. DNA hybridization indicates the presence of nolR homologous sequences in species belonging to the Rhizobium and Sinorhizobium genera while no hybridization signal was detected in species from the Mesorhizobium, Bradyrhizo-bium, Azorhizobium, and Agrobacterium genera. We isolated the nolR gene from the Rhizobium leguminosarum bv. viciae strain TOM and showed that the TOM nolR gene acts similarly to S. meliloti nolR by repressing the expression of both the nodABCIJ and the nodD genes, resulting in decreased Nod factor production. The presence of a functional nolR gene in R. leguminosarum is correlated with an increased rate and extent of nodulation of pea. The conserved primary structure, the location of the DNA-binding domain, and the similar size of NolR proteins, compared with a family of small bacterial regulatory proteins including HlyU, SmtB, and the ArsR-type regulators, revealed that NolR belongs to this family.


2006 ◽  
Vol 189 (1) ◽  
pp. 160-168 ◽  
Author(s):  
Michael J. Mitsch ◽  
Alison Cowie ◽  
Turlough M. Finan

ABSTRACT The NAD+-dependent malic enzyme (DME) and the NADP+-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N2 (Fix−) in alfalfa root nodules, whereas tme mutants are unimpaired in their N2-fixing ability (Fix+). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N2 fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N2 fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD+-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N2 fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H+ to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N2-fixing bacteroids.


2005 ◽  
Vol 51 (7) ◽  
pp. 599-604 ◽  
Author(s):  
P Aneja ◽  
A Zachertowska ◽  
T C Charles

The competitive abilities of Sinorhizobium meliloti mutant strains containing lesions in the PHB synthesis (phbC) and degradation (bdhA) pathways were compared. While the bdhA mutant showed no noticeable symbiotic defects on alfalfa host plants when inoculated alone, in mixed inoculation experiments it was found to be less competitive than the wild type for nodule occupancy. Long-term survival of the bdhA mutant on a carbon-limiting medium was not affected. However, when subjected to competition with the wild-type strain in periodic subculturing through alternating carbon-limiting and carbon-excess conditions, the bdhA mutant performed poorly. A more severe defect in competition for growth and nodule occupancy was observed with a mutant unable to synthesize PHB (phbC). These results indicate that the ability to efficiently deposit cellular PHB stores is a key factor influencing competitive survival under conditions of fluctuating nutrient carbon availability, whereas the ability to use these stores is less important.Key words: Sinorhizobium meliloti, PHB metabolism, competition.


2018 ◽  
Vol 31 (10) ◽  
pp. 1075-1082 ◽  
Author(s):  
Fernando Sorroche ◽  
Pablo Bogino ◽  
Daniela M. Russo ◽  
Angeles Zorreguieta ◽  
Fiorela Nievas ◽  
...  

Bacterial surface molecules are crucial for the establishment of a successful rhizobia-legume symbiosis, and, in most bacteria, are also critical for adherence properties, surface colonization, and as a barrier for defense. Rhizobial mutants defective in the production of exopolysaccharides (EPSs), lipopolysaccharides (LPSs), or capsular polysaccharides are usually affected in symbiosis with their plant hosts. In the present study, we evaluated the role of the combined effects of LPS and EPS II in cell-to-cell and cell-to-surface interactions in Sinorhizobium meliloti by studying planktonic cell autoaggregation, biofilm formation, and symbiosis with the host plant Medicago sativa. The lpsB mutant, which has a defective core portion of LPS, exhibited a reduction in biofilm formation on abiotic surfaces as well as altered biofilm architecture compared with the wild-type Rm8530 strain. Atomic force microscopy and confocal laser microscopy revealed an increase in polar cell-to-cell interactions in the lpsB mutant, which might account for the biofilm deficiency. However, a certain level of biofilm development was observed in the lpsB strain compared with the EPS II-defective mutant strains. Autoaggregation experiments carried out with LPS and EPS mutant strains showed that both polysaccharides have an impact on the cell-to-cell adhesive interactions of planktonic bacteria. Although the lpsB mutation and the loss of EPS II production strongly stimulated early attachment to alfalfa roots, the number of nodules induced in M. sativa was not increased. Taken together, this work demonstrates that S. meliloti interactions with biotic and abiotic surfaces depend on the interplay between LPS and EPS II.


2008 ◽  
Vol 190 (14) ◽  
pp. 4831-4848 ◽  
Author(s):  
Jesus M. Eraso ◽  
Jung Hyeob Roh ◽  
Xiaohua Zeng ◽  
Stephen J. Callister ◽  
Mary S. Lipton ◽  
...  

ABSTRACTThe PrrBA two-component regulatory system is a major global regulator inRhodobacter sphaeroides2.4.1. Here we have compared the transcriptome and proteome profiles of the wild-type (WT) and mutant PrrA2 cells grown anaerobically in the dark with dimethyl sulfoxide as an electron acceptor. Approximately 25% of the genes present in the PrrA2 genome are regulated by PrrA at the transcriptional level, either directly or indirectly, by twofold or more relative to the WT. The genes affected are widespread throughout all COG (cluster of orthologous group) functional categories, with previously unsuspected “metabolic” genes affected in PrrA2 cells. PrrA was found to act as both an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole-genome transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values for WT and PrrA2 cells showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected genes that were both positively and negatively regulated.lacZtranscriptional andkantranslational fusions enabled us to map putative PrrA binding sites and revealed potential gene targets for indirect regulation by PrrA.


Sign in / Sign up

Export Citation Format

Share Document