scholarly journals Cloning and Characterization of the Gene Cluster for Palatinose Metabolism from the Phytopathogenic BacteriumErwinia rhapontici

2001 ◽  
Vol 183 (8) ◽  
pp. 2425-2430 ◽  
Author(s):  
Frederik Börnke ◽  
Mohammad Hajirezaei ◽  
Uwe Sonnewald

ABSTRACT Erwinia rhapontici is able to convert sucrose into isomaltulose (palatinose, 6-O-α-d-glucopyranosyl-d-fructose) and trehalulose (1-O-α-d-glucopyranosyl-d-fructose) by the activity of a sucrose isomerase. These sucrose isomers cannot be metabolized by plant cells and most other organisms and therefore are possibly advantageous for the pathogen. This view is supported by the observation that in vitro yeast invertase activity can be inhibited by palatinose, thus preventing sucrose consumption. Due to the lack of genetic information, the role of sucrose isomers in pathogenicity has not been evaluated. Here we describe for the first time the cloning and characterization of the palatinose (pal) genes fromErwinia rhapontici. To this end, a 15-kb chromosomal DNA fragment containing nine complete open reading frames (ORFs) was cloned. The pal gene products of Erwinia rhapontici were shown to be homologous to proteins involved in uptake and metabolism of various sugars from other microorganisms. ThepalE, palF, palG, palH, palK, palQ, and palZgenes were oriented divergently with respect to the palRand palI genes, and sequence analysis suggested that the first set of genes constitutes an operon. Northern blot analysis of RNA extracted from bacteria grown under various conditions implies that the expression of the palI gene and the palEFGHKQZgenes is oppositely regulated at the transcriptional level. Genes involved in palatinose uptake and metabolism are down regulated by sucrose and activated by palatinose. Palatinose activation is inhibited by sucrose. Functional expression of palI andpalQ in Escherichia coli revealed sucrose isomerase and palatinase activity, respectively.

1998 ◽  
Vol 180 (23) ◽  
pp. 6224-6231 ◽  
Author(s):  
Viviane Finck-Barbançon ◽  
Timothy L. Yahr ◽  
Dara W. Frank

ABSTRACT In recent studies, we have shown that Pseudomonas aeruginosa strains that are acutely cytotoxic in vitro damage the lung epithelium in vivo. Genetic analysis indicated that the factor responsible for acute cytotoxicity was controlled by ExsA and therefore was part of the exoenzyme S regulon. The specific virulence determinant responsible for epithelial damage in vivo and cytotoxicity in vitro was subsequently mapped to the exoU locus. The present studies are focused on a genetic characterization of the exoUlocus. Northern blot analyses and complementation experiments indicated that a region downstream of exoU was expressed and that the expression of this region corresponded to increased ExoU secretion. DNA sequence analysis of a region downstream of exoU identified several potential coding regions. One of these open reading frames, SpcU (specific Pseudomonas chaperone for ExoU), encoded a small 15-kDa acidic protein (137 amino acids [pI 4.4]) that possessed a leucine-rich motif associated with the Syc family of cytosolic chaperones for the Yersinia Yops. T7 expression analysis and nickel chromatography of histidine-tagged proteins indicated that ExoU and SpcU associated as a noncovalent complex when coexpressed inEscherichia coli. The association of ExoU and SpcU required amino acids 3 to 123 of ExoU. In P. aeruginosa, ExoU and SpcU are coordinately expressed as an operon that is controlled at the transcriptional level by ExsA.


2003 ◽  
Vol 77 (20) ◽  
pp. 11268-11273 ◽  
Author(s):  
Nikolai Klymiuk ◽  
Mathias Müller ◽  
Gottfried Brem ◽  
Bernhard Aigner

ABSTRACT Endogenous retrovirus (ERV) sequences have been found in all mammals. In vitro and in vivo experiments revealed ERV activation and cross-species infection in several species. Sheep (Ovis aries) are used for various biotechnological purposes; however, they have not yet been comprehensively screened for ERV sequences. Therefore, the aim of the study was to classify the ERV sequences in the ovine genome (OERV) by analyzing the retroviral pro-pol sequences. Three OERV β families and nine OERV γ families were revealed. Novel open reading frames (ORF) in the amplified proviral fragment were found in one OERV β family and two OERV γ families. Hybrid OERV produced by putative recombination events were not detected. Quantitative analysis of the OERV sequences in the ovine genome revealed no relevant variations in the endogenous retroviral loads of different breeds. Expression analysis of different tissues from fetal and pregnant sheep detected mRNA from both gammaretrovirus families, showing ORF fragments. Thus, the release of retroviruses from sheep cells cannot be excluded.


2006 ◽  
Vol 75 (2) ◽  
pp. 774-780 ◽  
Author(s):  
Félix J. Sangari ◽  
Asunción Seoane ◽  
María Cruz Rodríguez ◽  
Jesús Agüero ◽  
Juan M. García Lobo

ABSTRACT Most members of the genus Brucella show strong urease activity. However, the role of this enzyme in the pathogenesis of Brucella infections is poorly understood. We isolated several Tn5 insertion mutants deficient in urease activity from Brucella abortus strain 2308. The mutations of most of these mutants mapped to a 5.7-kbp DNA region essential for urease activity. Sequencing of this region, designated ure1, revealed the presence of seven open reading frames corresponding to the urease structural proteins (UreA, UreB, and UreC) and the accessory proteins (UreD, UreE, UreF, and UreG). In addition to the urease genes, another gene (cobT) was identified, and inactivation of this gene affected urease activity in Brucella. Subsequent analysis of the previously described sequences of the genomes of Brucella spp. revealed the presence of a second urease cluster, ure2, in all them. The ure2 locus was apparently inactive in B. abortus 2308. Urease-deficient mutants were used to evaluate the role of urease in Brucella pathogenesis. The urease-producing strains were found to be resistant in vitro to strong acid conditions in the presence of urea, while urease-negative mutants were susceptible to acid treatment. Similarly, the urease-negative mutants were killed more efficiently than the urease-producing strains during transit through the stomach. These results suggested that urease protects brucellae during their passage through the stomach when the bacteria are acquired by the oral route, which is the major route of infection in human brucellosis.


2003 ◽  
Vol 77 (4) ◽  
pp. 2385-2399 ◽  
Author(s):  
Wendy Maury ◽  
Patrick J. Wright ◽  
Sarahann Bradley

ABSTRACT A novel strain of equine infectious anemia virus (EIAV) called vMA-1c that rapidly and specifically killed infected equine fibroblasts (ED cells) but not other infectible cell lines was established. This strain was generated from an avirulent, noncytopathic strain of EIAV, MA-1. Studies with this new cytolytic strain of virus have permitted us to define viral parameters associated with EIAV-induced cell killing and begin to explore the mechanism. vMA-1c infection resulted in induction of rapid cell death, enhanced fusogenic activity, and increased rates of spread in equine fibroblasts compared to other strains of EIAV. The highly cytolytic nature of vMA-1c suggested that this strain might be superinfecting equine fibroblasts. Receptor interference studies demonstrated that prior infection of equine fibroblasts with EIAV did not alter the ability of vMA-1c to infect and kill these cells. In similar studies in a canine fibroblast cell line, receptor interference did occur. vMA-1c infection of equine fibroblasts was also associated with large quantities of unintegrated viral DNA, a well-established hallmark of retroviral superinfection. Cloning of the vMA-1c genome identified nucleotide changes that would result in at least one amino acid change in all viral proteins. A chimeric infectious molecular clone containing the vMA-1c tat, S2, and env open reading frames recapitulated most of the characteristics of vMA-1c, including superinfection, fibroblast killing, and fusogenic activity. In summary, in vitro selection for a strain of EIAV that rapidly killed cells resulted in the generation of a virus that was able to superinfect these cells, presumably by the use of a novel mechanism of cell entry. This phenotype mapped to the 3′ half of the genome.


2001 ◽  
Vol 276 (50) ◽  
pp. 47046-47051 ◽  
Author(s):  
Jin J. Sakamoto ◽  
Miho Sasaki ◽  
Tetsuaki Tsuchido

We purified and characterized a 39-kDaBacillus subtilis168 nuclease that has been suggested in this laboratory to be involved in chromosomal DNA degradation induced by lethal heat and cold shock treatmentsin vivo. The nuclease activity was inhibitedin vitroby aurintricalboxylic acid but not by Zn2+. By the mutant analysis, we identified the 39-kDa nuclease as a product ofyokFgene. TheyokFgene contained a putative lipoprotein signal peptide motif. Afterin vivoexposure to lethal heat and cold stresses, the chromosomal DNA fragmentation was reduced in theyokFmutant, which demonstrated about a 2–10-fold higher survival rate than the wild type. TheyokFmutant was found to be more sensitive to mitomycin C than the wild type. The transformation efficiency of theyokFmutant was about 10 times higher than that of the wild type. It is suggested that whenB. subtiliscells are exposed to a stressful thermal shock resulting in membrane perturbation, YokF nuclease consequently dislocates into the cytoplasm and then attacks DNA.


2021 ◽  
Author(s):  
Sonika Sharma ◽  
Sibnarayan Datta ◽  
Soumya Chatterjee ◽  
Moumita Dutta ◽  
Jhuma Samanta ◽  
...  

Abstract To treat antibiotic resistance bacteria, bacteriophage (also called 'phage') application has recently drawn considerable attention from researchers globally. Bacteria like Pseudomonas aeruginosa are known to be associated with nosocomial infections especially in patients with compromised immune systems. In the present work, phage against P. aeruginosa (named 'DRLP1') was isolated from wastewater, enriched and characterized. Morphologically DRLP1 belongs to the family Myoviridae with a high lytic ability. DRLP1 has a burst size of approximately 100 PFU/infected cells, a rapid adsorption time when supplemented with MgCl2, and has viability in a wide temperature range and pH. Genomic sequencing and bioinformatics analysis showed that the phage genome is linear double-stranded, 66,243 bp in length and have a GC content of 54.9%. the genome encodes 93 phage related ORFs open reading frames (ORFs). Phage stability in lyophilized state, adsorption study on sodium alginate beads, and in-vitro pathogen reduction assays were also investigated. Study carried out with artificially contaminated fomites suggests that this phage has the potential for application as a biological decontaminant agent against P. aeruginosa in different conditions.


2005 ◽  
Vol 389 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Rajesh K. Soni ◽  
Parul Mehra ◽  
Gauranga Mukhopadhyay ◽  
Suman Kumar Dhar

In Escherichia coli, DnaC is essential for loading DnaB helicase at oriC (the origin of chromosomal DNA replication). The question arises as to whether this model can be generalized to other species, since many eubacterial species fail to possess dnaC in their genomes. Previously, we have reported the characterization of HpDnaB (Helicobacter pylori DnaB) both in vitro and in vivo. Interestingly, H. pylori does not have a DnaC homologue. Using two different E. coli dnaC (EcdnaC) temperature-sensitive mutant strains, we report here the complementation of EcDnaC function by HpDnaB in vivo. These observations strongly suggest that HpDnaB can bypass EcDnaC activity in vivo.


2010 ◽  
Vol 163 (1) ◽  
pp. 52-63 ◽  
Author(s):  
Sha Li ◽  
Heng Cai ◽  
Yujia Qing ◽  
Ben Ren ◽  
Hong Xu ◽  
...  

1998 ◽  
Vol 95 (16) ◽  
pp. 9123-9128 ◽  
Author(s):  
Naomi Mukae ◽  
Masato Enari ◽  
Hideki Sakahira ◽  
Yoji Fukuda ◽  
Johji Inazawa ◽  
...  

Caspase-activated DNase (CAD) cleaves chromosomal DNA during apoptosis. Here, we report isolation of two classes of human CAD cDNAs from a human KT-3 leukemic cell cDNA library. One class of cDNA encoded a protein comprising 338 amino acids, which showed a marked similarity to its murine counterpart. In vitro transcription and translation of this cDNA resulted in a functional CAD protein when the protein was synthesized in the presence of its inhibitor (inhibitor of CAD). The other cDNA class contained many deletions, insertions, and point mutations in the sequence corresponding to the coding region, suggesting that it is derived from a pseudogene. The functional CAD gene was localized to human chromosome 1p36.3 by fluorescent in situ hybridization. The CAD mRNA was expressed in a limited number of human tissues, including pancreas, spleen, prostate, and ovary. The expression of the CAD mRNA in human cell lines correlated with their ability to show DNA fragmentation during apoptosis. Overexpression of CAD potentiated DNA fragmentation by apoptotic stimuli in these cell lines, indicating that CAD is responsible for the apoptotic DNA degradation.


2003 ◽  
Vol 71 (10) ◽  
pp. 5772-5784 ◽  
Author(s):  
Anita Verma ◽  
Anthony T. Maurelli

ABSTRACT Genome sequencing of C. trachomatis serovar D revealed the presence of three putative open reading frames (ORFs), CT145 (Pkn1), CT673 (Pkn5), and CT301 (PknD), encoding eukaryote-like serine/threonine kinases (Ser/Thr kinases). Two of these putative kinase genes, CT145 and CT301, were PCR amplified from serovar L2, cloned, and sequenced. Predicted translation products of the ORFs showed the presence of conserved kinase motifs at the N terminus of the proteins. CT145 and CT301 (encoding Pkn1 and PknD, respectively) were expressed in Escherichia coli as GST fusion proteins. In vitro kinase assays with Escherichia coli-derived glutathione S-transferase fusion proteins showed autophosphorylation of Pkn1 and PknD, indicating that they are functional kinases. Gene expression analysis of these kinase genes in Chlamydia by reverse transcriptase PCR indicated expression of these kinases at the early mid phase of the developmental cycle. Immunoprecipitated native chlamydial Pkn1 and PknD proteins also showed autophosphorylation in an in vitro kinase assay. Phosphoamino acid analysis by thin-layer chromatography confirmed that Pkn1 and PknD are phosphorylated on both serine and threonine residues. Interaction of Pkn1 and PknD with each other as well as interaction of Pkn1 with inclusion membrane protein G (IncG) was demonstrated by using a bacterial two-hybrid system. These interactions were further suggested by phosphorylation of the proteins in in vitro kinase assays. This report is the first description of the existence of functional Ser/Thr kinases in Chlamydia. The results of these findings should lead to a better understanding of how Chlamydia interact and interfere with host signaling pathways, since kinases represent potential mediators of the intimate host-pathogen interactions that are essential to the intracellular life cycle of Chlamydia.


Sign in / Sign up

Export Citation Format

Share Document