scholarly journals Helicobacter pylori DnaB helicase can bypass Escherichia coli DnaC function in vivo

2005 ◽  
Vol 389 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Rajesh K. Soni ◽  
Parul Mehra ◽  
Gauranga Mukhopadhyay ◽  
Suman Kumar Dhar

In Escherichia coli, DnaC is essential for loading DnaB helicase at oriC (the origin of chromosomal DNA replication). The question arises as to whether this model can be generalized to other species, since many eubacterial species fail to possess dnaC in their genomes. Previously, we have reported the characterization of HpDnaB (Helicobacter pylori DnaB) both in vitro and in vivo. Interestingly, H. pylori does not have a DnaC homologue. Using two different E. coli dnaC (EcdnaC) temperature-sensitive mutant strains, we report here the complementation of EcDnaC function by HpDnaB in vivo. These observations strongly suggest that HpDnaB can bypass EcDnaC activity in vivo.

2005 ◽  
Vol 187 (10) ◽  
pp. 3374-3383 ◽  
Author(s):  
Christopher Stead ◽  
An Tran ◽  
Donald Ferguson ◽  
Sara McGrath ◽  
Robert Cotter ◽  
...  

ABSTRACT The lipid A domain anchors lipopolysaccharide (LPS) to the outer membrane and is typically a disaccharide of glucosamine that is both acylated and phosphorylated. The core and O-antigen carbohydrate domains are linked to the lipid A moiety through the eight-carbon sugar 3-deoxy-d-manno-octulosonic acid known as Kdo. Helicobacter pylori LPS has been characterized as having a single Kdo residue attached to lipid A, predicting in vivo a monofunctional Kdo transferase (WaaA). However, using an in vitro assay system we demonstrate that H. pylori WaaA is a bifunctional enzyme transferring two Kdo sugars to the tetra-acylated lipid A precursor lipid IVA. In the present work we report the discovery of a Kdo hydrolase in membranes of H. pylori capable of removing the outer Kdo sugar from Kdo2-lipid A. Enzymatic removal of the Kdo group was dependent upon prior removal of the 1-phosphate group from the lipid A domain, and mass spectrometric analysis of the reaction product confirmed the enzymatic removal of a single Kdo residue by the Kdo-trimming enzyme. This is the first characterization of a Kdo hydrolase involved in the modification of gram-negative bacterial LPS.


Author(s):  
Ashwini Kumar Ray ◽  
Paula B. Luis ◽  
Surabhi Kirti Mishra ◽  
Daniel P. Barry ◽  
Mohammad Asim ◽  
...  

Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.


2015 ◽  
Vol 25 (6) ◽  
pp. 394-402 ◽  
Author(s):  
Taylor L. Fischer ◽  
Robert J. White ◽  
Katherine F.K. Mares ◽  
Devin E. Molnau ◽  
Justin J. Donato

<b><i>Background/Aims:</i></b> We previously identified the Triclo1 fosmid in a functional metagenomic selection for clones that increased triclosan tolerance in <i>Escherichia coli</i>. The active enzyme encoded by Triclo1 is ucFabV. Although ucFabV is homologous to FabV from other organisms, ucFabV contains substitutions at key positions that would predict differences in substrate binding. Therefore, a detailed characterization of ucFabV was conducted to link its biochemical activity to its ability to confer reduced triclosan sensitivity. <b><i>Methods:</i></b> ucFabV and a catalytic mutant were purified and used to reduce crotonoyl-CoA in vitro. The mutant and wild-type enzymes were introduced into <i>E. coli</i>, and their ability to confer triclosan tolerance as well as suppress a temperature-sensitive mutant of FabI were measured. <b><i>Results:</i></b> Purified ucFabV, but not the mutant, reduced crotonoyl-CoA in vitro. The wild-type enzyme confers increased triclosan tolerance when introduced into <i>E. coli</i>, whereas the mutant remained susceptible to triclosan<i>. </i>Additionally, wild-type ucFabV, but not the mutant, functionally replaced FabI within living cells. <b><i>Conclusion:</i></b> ucFabV confers increased tolerance through its function as an enoyl-ACP reductase. Furthermore, ucFabV is capable of restoring viability in the presence of compromised FabI, suggesting ucFabV is likely facilitating an alternate step within fatty acid synthesis, bypassing FabI inhibition.


Genetics ◽  
1979 ◽  
Vol 92 (4) ◽  
pp. 1041-1059
Author(s):  
Joan M Henson ◽  
Herman Chu ◽  
Carleen A Irwin ◽  
James R Walker

ABSTRACT Escherichia coli mutants with temperature-sensitive (ts) mutations in dnaX and dnaY genes have been isolated. Based on transduction by phage PI, dnaX and Y have been mapped at minutes 10.4-10.5 and 12.1, respectively, in the sequence dnaX purE dnaY. Both dnaXts36 and YtslO are recessive to wild-type alleles present on episomes. F13 carries both dnaX  + and Y  +; the shorter F210 carries dnaY  +, but not X  +. Lambda transducing phages that carry dnaX  + or Y  + have been isolated, and hybrid plasmids of Col E1 and E. coli DNA from the CLARKE and CARBON (1976) collection also carry portions of the dnaX purE dnaY region. Results obtained with the λ transducing phages and the hybrid plasmids suggest that dnaX is a different gene from the previously characterized dnaZ gene, which is also near minute 10.5.—The dnaXts36 mutant, after a shift to 42°, stopped DNA synthesis gradually, and the total amount of DNA increased two-fold. When this mutant was shifted to M°, the rate of DNA synthesis dropped immediately and the final increment of DNA was only 10% of the initial amount. Replicative DNA synthesis in toluene-treated cells was completely inhibited at 42° and was partially in-hibited even at 30°.—When the dnaYtslO mutant was shifted to 42°, DNA synthesis gradually stopped, and the amount of DNA increased 3.6-fold. At 44°, residual DNA synthesis amounted to a two-fold increase. Replicative DNA synthesis in vitro in toluene-treated cells was inactivated after 20 minutes at 42° or by "preincubation" of cells at 42° before toluene treatment.— The dnaX and dnaY products probably function in polymerization of DNA, although participation also in initiation cannot be excluded.


2000 ◽  
Vol 44 (2) ◽  
pp. 248-254 ◽  
Author(s):  
J. E. Bina ◽  
R. A. Alm ◽  
M. Uria-Nickelsen ◽  
S. R. Thomas ◽  
T. J. Trust ◽  
...  

ABSTRACT We previously demonstrated (M. M. Exner, P. Doig, T. J. Trust, and R. E. W. Hancock, Infect. Immun. 63:1567–1572, 1995) that Helicobacter pylori has at least one nonspecific porin, HopE, which has a low abundance in the outer membrane but forms large channels. H. pylori is relatively susceptible to most antimicrobial agents but less susceptible to the polycationic antibiotic polymyxin B. We demonstrate here that H. pylori is able to take up higher basal levels of the hydrophobic fluorescent probe 1-N-phenylnaphthylamine (NPN) thanPseudomonas aeruginosa or Escherichia coli, consistent with its enhanced susceptibility to hydrophobic agents. Addition of polymyxin B led to a further increase in NPN uptake, indicative of a self-promoted uptake pathway, but it required a much higher amount of polymyxin B to yield a 50% increase in NPN uptake inH. pylori (6 to 8 μg/ml) than in P. aeruginosa or E. coli (0.3 to 0.5 μg/ml), suggesting that H. pylori has a less efficient self-promoted uptake pathway. Since intrinsic resistance involves the collaboration of restricted outer membrane permeability and secondary defense mechanisms, such as periplasmic β-lactamase (which H. pylori lacks) or efflux, we examined the possible role of efflux in antibiotic susceptibility. We had previously identified in H. pylori 11637 the presence of portions of three genes with homology to potential restriction-nodulation-division (RND) efflux systems. It was confirmed that H. pylori contained only these three putative RND efflux systems, named here hefABC, hefDEF, andhefGHI, and that the hefGHI system was expressed only in vivo while the two other RND systems were expressed both in vivo and in vitro. In uptake studies, there was no observable energy-dependent tetracycline, chloramphenicol, or NPN efflux activity in H. pylori. Independent mutagenesis of the three putative RND efflux operons in the chromosome of H. pylori had no effect on the in vitro susceptibility of H. pylori to 19 antibiotics. These results, in contrast to what is observed inE. coli, P. aeruginosa, and other clinically important gram-negative bacteria, suggest that active efflux does not play a role in the intrinsic resistance of H. pylori to antibiotics.


2009 ◽  
Vol 192 (1) ◽  
pp. 242-255 ◽  
Author(s):  
S. J. Ryan Arends ◽  
Kyle Williams ◽  
Renada J. Scott ◽  
Silvana Rolong ◽  
David L. Popham ◽  
...  

ABSTRACT SPOR domains are ∼70 amino acids long and occur in >1,500 proteins identified by sequencing of bacterial genomes. The SPOR domains in the FtsN cell division proteins from Escherichia coli and Caulobacter crescentus have been shown to bind peptidoglycan. Besides FtsN, E. coli has three additional SPOR domain proteins—DamX, DedD, and RlpA. We show here that all three of these proteins localize to the septal ring in E. coli. The loss of DamX or DedD either alone or in combination with mutations in genes encoding other division proteins resulted in a variety of division phenotypes, demonstrating that DamX and DedD participate in cytokinesis. In contrast, RlpA mutants divided normally. Follow-up studies revealed that the SPOR domains themselves localize to the septal ring in vivo and bind peptidoglycan in vitro. Even SPOR domains from heterologous organisms, including Aquifex aeolicus, localized to septal rings when produced in E. coli and bound to purified E. coli peptidoglycan sacculi. We speculate that SPOR domains localize to the division site by binding preferentially to septal peptidoglycan. We further suggest that SPOR domain proteins are a common feature of the division apparatus in bacteria. DamX was characterized further and found to interact with multiple division proteins in a bacterial two-hybrid assay. One interaction partner is FtsQ, and several synthetic phenotypes suggest that DamX is a negative regulator of FtsQ function.


2006 ◽  
Vol 72 (9) ◽  
pp. 6405-6410 ◽  
Author(s):  
Raul R. Raya ◽  
Peter Varey ◽  
Rebecca A. Oot ◽  
Michael R. Dyen ◽  
Todd R. Callaway ◽  
...  

ABSTRACT Bacteriophage CEV1 was isolated from sheep resistant to Escherichia coli O157:H7 colonization. In vitro, CEV1 efficiently infected E. coli O157:H7 grown both aerobically and anaerobically. In vivo, sheep receiving a single oral dose of CEV1 showed a 2-log-unit reduction in intestinal E. coli O157:H7 levels within 2 days compared to levels in the controls.


2002 ◽  
Vol 184 (14) ◽  
pp. 3808-3814 ◽  
Author(s):  
Melicent C. Peck ◽  
Tamas Gaal ◽  
Robert F. Fisher ◽  
Richard L. Gourse ◽  
Sharon R. Long

ABSTRACT Sinorhizobium meliloti, a gram-negative soil bacterium, forms a nitrogen-fixing symbiotic relationship with members of the legume family. To facilitate our studies of transcription in S. meliloti, we cloned and characterized the gene for the α subunit of RNA polymerase (RNAP). S. meliloti rpoA encodes a 336-amino-acid, 37-kDa protein. Sequence analysis of the region surrounding rpoA identified six open reading frames that are found in the conserved gene order secY (SecY)-adk (Adk)-rpsM (S13)-rpsK (S11)-rpoA (α)-rplQ (L17) found in the α-proteobacteria. In vivo, S. meliloti rpoA expressed in Escherichia coli complemented a temperature sensitive mutation in E. coli rpoA, demonstrating that S. meliloti α supports RNAP assembly, sequence-specific DNA binding, and interaction with transcriptional activators in the context of E. coli. In vitro, we reconstituted RNAP holoenzyme from S. meliloti α and E. coli β, β′, and σ subunits. Similar to E. coli RNAP, the hybrid RNAP supported transcription from an E. coli core promoter and responded to both upstream (UP) element- and Fis-dependent transcription activation. We obtained similar results using purified RNAP from S. meliloti. Our results demonstrate that S. meliloti α functions are conserved in heterologous host E. coli even though the two α subunits are only 51% identical. The ability to utilize E. coli as a heterologous system in which to study the regulation of S. meliloti genes could provide an important tool for our understanding and manipulation of these processes.


1968 ◽  
Vol 46 (1) ◽  
pp. 109-115 ◽  
Author(s):  
J. L. Nichols ◽  
B. G. Lane

Ribonucleoprotein "precursor-particles" were isolated from a methionine auxotroph of E. coli (RCrelaxed), which had been cultured under conditions of methionine deprivation. Following incubation of the "particles" in vitro with [methyl-14C]-S-adenosyl methionine, the ribonucleates were extracted from the particles, and precipitated from aqueous 2 M sodium chloride solution at 0°, before analysis for the incorporation of O2′-[methyl-14C]-substituents into the RNA. It was found that two of the four principal alkali-stable dinucleotides, known to be present in alkali hydrolysates of E. coli rRNA, contained O2′-[methyl-14C]-substituents: O2′Me-GpGp and O2′Me-CpCp, whereas the two remaining dinucleotides, N4,O2′diMe-CpCp and O2′Me-UpGp, did not contain significant radioactivity. It has been concluded that highly specific enzymic O2′-methylation of E. coli RNA can occur subsequent to polynucleotide synthesis. Allied studies are reported concerning the characterization of N4,O2′-[dimethyl-14C]-cytidine 5′-phosphate that was recovered from whole snake venom hydrolysates of E. coli rRNA, which had been labeled in vivo with [methyl-14C].


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document