scholarly journals Localization of the Cortex Lytic Enzyme CwlJ in Spores of Bacillus subtilis

2002 ◽  
Vol 184 (4) ◽  
pp. 1219-1224 ◽  
Author(s):  
Irina Bagyan ◽  
Peter Setlow

ABSTRACT The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca2+-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in cotE spores in which the spore coat is aberrant. These findings indicate the following: (i) the reason decoated and cotE spores germinate poorly with dipicolinic acid is the absence of CwlJ from these spores; and (ii) CwlJ is located in the spore coat, presumably tightly associated with one or more other coat proteins.

2003 ◽  
Vol 185 (7) ◽  
pp. 2315-2329 ◽  
Author(s):  
Katerina Ragkousi ◽  
Patrick Eichenberger ◽  
Christiaan van Ooij ◽  
Peter Setlow

ABSTRACT Bacillus subtilis spores can germinate with a 1:1 chelate of Ca2+ and dipicolinic acid (DPA), a compound present at high levels in the spore core. Using a genetic screen to identify genes encoding proteins that are specifically involved in spore germination by Ca2+-DPA, three mutations were identified. One was in the gene encoding the cortex lytic enzyme, CwlJ, that was previously shown to be essential for spore germination by Ca2+-DPA. The other two were mapped to an open reading frame, ywdL, encoding a protein of unknown function. Analysis of ywdL expression showed that the gene is expressed during sporulation in the mother cell compartment of the sporulating cell and that its transcription is σE dependent. Functional characterization of YwdL demonstrated that it is a new spore coat protein that is essential for the presence of CwlJ in the spore coat. Assembly of YwdL itself into the spore coat is dependent on the coat morphogenetic proteins CotE and SpoIVA. However, other than lacking CwlJ, ywdL spores have no obvious defect in their spore coat. Because of the role for YwdL in a part of the spore germination process, we propose renaming ywdL as a spore germination gene, gerQ.


2008 ◽  
Vol 190 (14) ◽  
pp. 4798-4807 ◽  
Author(s):  
Anil Magge ◽  
Amanda C. Granger ◽  
Paul G. Wahome ◽  
Barbara Setlow ◽  
Venkata R. Vepachedu ◽  
...  

ABSTRACT Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable. (iii) Spontaneous germination of spores with no DPA or low DPA levels was at least in part via activation of SleB. (iv) The other redundant CLE, CwlJ, was activated only by the release of high levels of DPA from spores. (v) Low levels of DPA were sufficient for the viability of spores that lacked most α/β-type small, acid-soluble spore proteins. (vi) DPA levels accumulated in spores prepared in low-DPA-containing media varied greatly between individual spores, in contrast to the presence of more homogeneous DPA levels in individual spores made in media with high DPA concentrations. (vii) At least the great majority of spores of several spoVF strains that contained no DPA also lacked other major spore small molecules and had gone through some of the early reactions in spore germination.


2000 ◽  
Vol 192 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Hiromu Takamatsu ◽  
Atsuo Imamura ◽  
Takeko Kodama ◽  
Kei Asai ◽  
Naotake Ogasawara ◽  
...  

2015 ◽  
Vol 81 (19) ◽  
pp. 6725-6735 ◽  
Author(s):  
Katja Nagler ◽  
Peter Setlow ◽  
Kai Reineke ◽  
Adam Driks ◽  
Ralf Moeller

ABSTRACTThe germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affectBacillus subtilisspore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca2+-dipicolinic acid, and water fluxes.


1998 ◽  
Vol 180 (9) ◽  
pp. 2285-2291 ◽  
Author(s):  
Adriano O. Henriques ◽  
Lawrence R. Melsen ◽  
Charles P. Moran

ABSTRACT Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus.sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in acotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer.


1984 ◽  
Vol 30 (11) ◽  
pp. 1367-1376
Author(s):  
Joseph Zucca ◽  
Serge Renaudin

Derived from a Bacillus subtilis unstable mutant strains which hyperproduce extracellular proteases were found to contain mutations at loci scoC, scoD, or scoE; these were observed by transmission electron microscopy. In scoC and scoD strains, spores formed overproduced spore coat proteins and the spore ultrastructure was deeply altered. In scoE strains, stage III of the sporulation was blocked. The pleiotropic effect of scoC mutations was either positive or negative. In unstable strains, mutations at the scoC locus stimulated α-amylase and levane sucrase hyperproduction. In stable strains, the same mutations led to an absence of α-amylase synthesis but to a normal levane sucrase production. ScoD mutations only induced α-amylase hyperproduction, while scoE mutations allowed neither levane sucrase production nor spore coat protein synthesis.


Sign in / Sign up

Export Citation Format

Share Document