scholarly journals Further Evidence that a Cell Wall Precursor [C55-MurNAc-(Peptide)-GlcNAc] Serves as an Acceptor in a Sorting Reaction

2002 ◽  
Vol 184 (8) ◽  
pp. 2141-2147 ◽  
Author(s):  
Alexey Ruzin ◽  
Anatoly Severin ◽  
Frank Ritacco ◽  
Keiko Tabei ◽  
Guy Singh ◽  
...  

ABSTRACT Previous studies suggested that a Gly-containing branch of cell wall precursor [C55-MurNAc-(peptide)-GlcNAc], which is often referred to as lipid II, might serve as a nucleophilic acceptor in sortase-catalyzed anchoring of surface proteins in Staphylococcus aureus. To test this hypothesis, we first simplified the procedure for in vitro biosynthesis of Gly-containing lipid II by using branched UDP-MurNAc-hexapeptide isolated from the cytoplasm of Streptomyces spp. Second, we designed a thin-layer chromatography-based assay in which the mobility of branched but not linear lipid II is shifted in the presence of both sortase and LPSTG-containing peptide. These results and those of additional experiments presented in this study further suggest that lipid II indeed serves as a natural substrate in a sorting reaction.

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Shauna D. Drumm ◽  
Rebecca Owens ◽  
Jennifer Mitchell ◽  
Orla M. Keane

In Ireland, Staphylococcus aureus is the most common cause of intramammary infection (IMI) in cattle with the bovine-adapted lineages CC151 and CC97 most commonly found. Surface proteins play a major role in establishing and maintaining the infection. A previous study revealed that a strain from the CC151 lineage showed significant decay in genes encoding predicted surface proteins. Twenty-three S. aureus strains, twelve belonging to CC151 and eleven belonging to CC97, isolated from clinical IMI, were sequenced and genes encoding cell wall anchored (CWA) proteins predicted. Analysis showed that a minority of genes encoding putative CWA proteins were intact in the CC151 strains compared to CC97. Of the 26 known CWA proteins in S. aureus, the CC151 strains only encoded 10 intact genes while CC97 encoded on average 18 genes. Also within the CC97 lineage, the repertoire of genes varied depending on individual strains, with strains encoding between 17-20 intact genes. Although CC151 is reported to internalize within bovine host cells, it does so in a fibronectin-binding protein (FnBPA and FnBPB) independent manner. In-vitro assays were performed and results showed that strains from CC151, and surprisingly also CC97, weakly bound bovine fibronectin and that the FnBPs were poorly expressed in both these lineages. Mass spectrometry analysis of cell wall extracts revealed that SdrE and AdsA were the most highly expressed CWA proteins in both lineages. These results demonstrate significant differences between CC151 and CC97 in their repertoire of genes encoding CWA proteins, which may impact immune recognition of these strains and their interactions with host cells.


2014 ◽  
Vol 58 (10) ◽  
pp. 5841-5847 ◽  
Author(s):  
Qiaobin Xiao ◽  
Sergei Vakulenko ◽  
Mayland Chang ◽  
Shahriar Mobashery

ABSTRACTStaphylococcus aureusis a leading cause of hospital- and community-acquired infections, which exhibit broad resistance to various antibiotics. We recently disclosed the discovery of the oxadiazole class of antibiotics, which hasin vitroandin vivoactivities against methicillin-resistantS. aureus(MRSA). We report herein that MmpL, a putative member of the resistance, nodulation, and cell division (RND) family of proteins, contributes to oxadiazole resistance in theS. aureusstrain COL. Through serial passages, we generated twoS. aureusCOL variants that showed diminished susceptibilities to an oxadiazole antibiotic. The MICs for the oxadiazole against one strain (designatedS. aureusCOLI) increased reproducibly 2-fold (to 4 μg/ml), while against the other strain (S. aureusCOLR), they increased >4-fold (to >8 μg/ml, the limit of solubility). The COLRstrain was derived from the COLIstrain. Whole-genome sequencing revealed 31 mutations inS. aureusCOLR, of which 29 were shared with COLI. Consistent with our previous finding that oxadiazole antibiotics inhibit cell wall biosynthesis, we found 13 mutations that occurred either in structural genes or in promoters of the genes of the cell wall stress stimulon. Two unique mutations inS. aureusCOLRwere substitutions in two genes that encode the putative thioredoxin (SACOL1794) and MmpL (SACOL2566). A role formmpLin resistance to oxadiazoles was discerned from gene deletion and complementation experiments. To our knowledge, this is the first report that a cell wall-acting antibiotic selects for mutations in the cell wall stress stimulon and the first to implicate MmpL in resistance to antibiotics inS. aureus.


2004 ◽  
Vol 53 (2) ◽  
pp. 675-685 ◽  
Author(s):  
Tanja Schneider ◽  
Maria Magdalena Senn ◽  
Brigitte Berger-Bächi ◽  
Alessandro Tossi ◽  
Hans-Georg Sahl ◽  
...  

2019 ◽  
Vol 5 (4) ◽  
pp. 270-277 ◽  
Author(s):  
Vijay Kumar ◽  
Simranjeet Singh ◽  
Ragini Bhadouria ◽  
Ravindra Singh ◽  
Om Prakash

Holoptelea integrifolia Roxb. Planch (HI) has been used to treat various ailments including obesity, osteoarthritis, arthritis, inflammation, anemia, diabetes etc. To review the major phytochemicals and medicinal properties of HI, exhaustive bibliographic research was designed by means of various scientific search engines and databases. Only 12 phytochemicals have been reported including biologically active compounds like betulin, betulinic acid, epifriedlin, octacosanol, Friedlin, Holoptelin-A and Holoptelin-B. Analytical methods including the Thin Layer Chromatography (TLC), High-Performance Thin Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Liquid Chromatography With Mass Spectral (LC-MS) analysis have been used to analyze the HI. From medicinal potency point of view, these phytochemicals have a wide range of pharmacological activities such as antioxidant, antibacterial, anti-inflammatory, and anti-tumor. In the current review, it has been noticed that the mechanism of action of HI with biomolecules has not been fully explored. Pharmacology and toxicological studies are very few. This seems a huge literature gap to be fulfilled through the detailed in-vivo and in-vitro studies.


2006 ◽  
Vol 188 (6) ◽  
pp. 2063-2072 ◽  
Author(s):  
Preeti M. Tendolkar ◽  
Arto S. Baghdayan ◽  
Nathan Shankar

ABSTRACT Enterococci are opportunistic pathogens and among the leading causes of nosocomial infections. Enterococcus faecalis, the dominant species among infection-derived isolates, has recently been recognized as capable of forming biofilms on abiotic surfaces in vitro as well as on indwelling medical devices. A few bacterial factors known to contribute to biofilm formation in E. faecalis have been characterized. To identify additional factors which may be important to this process, we utilized a Tn917-based insertional mutagenesis strategy to generate a mutant bank in a high-biofilm-forming E. faecalis strain, E99. The resulting mutant bank was screened for mutants exhibiting a significantly reduced ability to form biofilms. One mutant, P101D12, which showed greater than 70% reduction in its ability to form biofilms compared to the wild-type parent, was further characterized. The single Tn917 insertion in P101D12 was mapped to a gene, bee-2, encoding a probable cell wall-anchored protein. Sequence information for the region flanking bee-2 revealed that this gene was a member of a locus (termed the bee locus for biofilm enhancer in enterococcus) comprised of five genes encoding three putative cell wall-anchored proteins and two probable sortases. Contour-clamped homogeneous electric field gel and Southern hybridization analyses suggested that the bee locus is likely harbored on a large conjugative plasmid. Filter mating assays using wild-type E99 or mutant P101D12 as a donor confirmed that the bee locus could transfer conjugally at high frequency to recipient E. faecalis strains. This represents the first instance of the identification of a mobile genetic element conferring biofilm-forming property in E. faecalis.


Open Biology ◽  
2013 ◽  
Vol 3 (1) ◽  
pp. 120143 ◽  
Author(s):  
Jeff Errington

The peptidoglycan wall is a defining feature of bacterial cells and was probably already present in their last common ancestor. L-forms are bacterial variants that lack a cell wall and divide by a variety of processes involving membrane blebbing, tubulation, vesiculation and fission. Their unusual mode of proliferation provides a model for primitive cells and is reminiscent of recently developed in vitro vesicle reproduction processes. Invention of the cell wall may have underpinned the explosion of bacterial life on the Earth. Later innovations in cell envelope structure, particularly the emergence of the outer membrane of Gram-negative bacteria, possibly in an early endospore former, seem to have spurned further major evolutionary radiations. Comparative studies of bacterial cell envelope structure may help to resolve the early key steps in evolutionary development of the bacterial domain of life.


2020 ◽  
Vol 10 (2) ◽  
pp. 82
Author(s):  
Fatemeh Samieerad ◽  
Nematollah Gheibi

Background: Propolis is one of the useful bee colony products that have been used in traditional medicine for centuries. In this study, the physicochemical characters and their antibacterial effect of Iranian Propolis collected from Qazvin province was assessed.Methods: In this study, Thin Layer Chromatography and Vacuum Liquid Chromatography to detect different compounds of the extract have been used. In the initial evaluation of Propolis extract, it was found that the extract includes variable compounds with different polarity; so, the initial classification of extract with different polarity solvents was essential. Finally, 0.1 gr hydro alcoholic Propolis was injected to the HPLC by ultrasound. The antibacterial effect of Iranian ethanol extract Propolis was measured using a microdilution method against Pseudomonas aeruginosa: P. aeruginosa and Staphylococcus aureus: S.aureus standard strains and the minimum bactericidal and inhibitory concentration were defined.Results: Primary analysis of the ethanol extract by analytical Thin Layer Chromatography, demonstrated the presence of flavonoid and phenol in it. Minimum inhibitory concentration and Minimum Bactericidal Concentration for Staphylococcus aureus: S.aureus standard strain was 2.5mg/ml. The same procedure was done for Pseudomonas aeruginosa: P. aeruginosa standard strain and the Minimum inhibitory concentration and Minimum Bactericidal Concentration were 50mg/ml of Propolis extracts.  Conclusion: According to the results, the alcoholic extract of propolis from Qazvin province of Iran provides significant antimicrobial activity. Its powerful activity may be due to high total phenolic and flavonoid contents.Keywords: Iranian propolis, Antibacterial activity, Phenolic compounds, Flavonoid compound


Sign in / Sign up

Export Citation Format

Share Document