scholarly journals Regulation of Sialic Acid Catabolism by the DNA Binding Protein NanR in Escherichia coli

2003 ◽  
Vol 185 (16) ◽  
pp. 4806-4815 ◽  
Author(s):  
Kathryn A. Kalivoda ◽  
Susan M. Steenbergen ◽  
Eric R. Vimr ◽  
Jacqueline Plumbridge

ABSTRACT All Escherichia coli strains so far examined possess a chromosomally encoded nanATEK-yhcH operon for the catabolism of sialic acids. These unique nine-carbon sugars are synthesized primarily by higher eukaryotes and can be used as carbon, nitrogen, and energy sources by a variety of microbial pathogens or commensals. The gene nanR, located immediately upstream of the operon, encodes a protein of the FadR/GntR family that represses nan expression in trans. S1 analysis identified the nan transcriptional start, and DNA footprint analysis showed that NanR binds to a region of ∼30 bp covering the promoter region. Native (nondenaturing) polyacrylamide gel electrophoresis, mass spectrometry, and chemical cross-linking indicated that NanR forms homodimers in solution. The region protected by NanR contains three tandem repeats of the hexameric sequence GGTATA. Gel shift analysis with purified hexahistidine-tagged or native NanR detected three retarded complexes, suggesting that NanR binds sequentially to the three repeats. Artificial operators carrying different numbers of repeats formed the corresponding number of complexes. Among the sugars tested that were predicted to be products of the nan-encoded system, only the exogenous addition of sialic acid resulted in the dramatic induction of a chromosomal nanA-lacZ fusion or displaced NanR from its operator in vitro. Titration of NanR by the nan promoter region or artificial operators carrying different numbers of the GGTATA repeat on plasmids in this fusion strain supported the binding of the regulator to target DNA in vivo. Together, the results indicate that GGTATA is important for NanR binding, but the precise mechanism remains to be determined.

1993 ◽  
Vol 70 (04) ◽  
pp. 676-680 ◽  
Author(s):  
H F Kotzé ◽  
V van Wyk ◽  
P N Badenhorst ◽  
A du P Heyns ◽  
J P Roodt ◽  
...  

SummaryPlatelets were isolated from blood of baboons and treated with neuraminidase to remove platelet membrane sialic acid, a process which artificially ages the platelets. The platelets were then labelled with 111In and their mean life span, in vivo distribution and sites of Sequestration were measured. The effect of removal of sialic acid on the attachment of immunoglobulin to platelets were investigated and related to the Sequestration of the platelets by the spleen, liver, and bone marrow. Removal of sialic acid by neuraminidase did not affect the aggregation of platelets by agonists in vitro, nor their sites of Sequestration. The removal of 0.51 (median, range 0.01 to 2.10) nmol sialic acid/108 platelets shortened their life span by 75 h (median, range 0 to 132) h (n = 19, p <0.001), and there was an exponential correlation between the shortening of the mean platelet life span and the amount of sialic acid removed. The increase in platelet-associated IgG was 0.112 (median, range 0.007 to 0.309) fg/platelet (n = 25, p <0.001) after 0.79 (median, range 0.00 to 6.70) nmol sialic acid/108 platelets was removed (p <0.001). There was an exponential correlation between the shortening of mean platelet life span after the removal of sialic acid and the increase in platelet-associated IgG. The results suggest that platelet membrane sialic acid influences ageing of circulating platelets, and that the loss of sialic acid may have exposed a senescent cell antigen that binds IgG on the platelet membrane. The antibody-antigen complex may then provide a signal to the macrophages that the platelet is old, and can be phagocytosed and destroyed.


Author(s):  
Ирина Владимировна Акулина ◽  
Светлана Ивановна Павлова ◽  
Ирина Семеновна Степаненко ◽  
Назира Сунагатовна Карамова ◽  
Александр Владиславович Сергеев ◽  
...  
Keyword(s):  

Проведено токсикологическое исследование соединений с антибактериальными свойствами из группы терпенов ментанового ряда в условиях in vitro и in vivo: лимонена (B34), его производного (+)-1,2-оксида лимонена (B60) и серосодержащего монотерпенового соединения 2-(1’-гидрокси-4’-изопренил-1’-метилциклогексил-2’-тио)метилэтаноата (B65). В условиях in vitro (культура опухолевых клеток HeLa) изучаемые монотерпены в диапазоне концентраций 2 – 200 мкг/мл обладали цитотоксичностью. Ингибирующая концентрация (ИК50) для B34 составила 231 (167 – 295) мкг/мл, для B60 – 181 (105 – 257) мкг/мл, ИК50 B65 – 229 (150 – 308) мкг/мл. Исследование генотоксичности показало, что B34 и B65 в диапазоне концентраций 50 – 1000 мкг/мл не индуцируют SOS мутагенез в клетках Escherichia coli PQ37, тогда как B60 в концентрациях 500 и 1000 мкг/мл проявляет генотоксичность. In vivo в остром эксперименте на беспородных мышах установлена низкая токсичность B34 и его производных при различных путях введения. Наименьший показатель острой токсичности имеет B65, в связи с чем дополнительно на крысах проведено изучение его хронической токсичности. Ежедневное внутрижелудочное введение B65 в разовых дозах, составляющих 1/10 и 1/20 ЛД50 (1000 мг/кг и 500 мг/кг), в течение 1 мес не вызывало гибели животных, значимых нарушений общего состояния, изменения динамики массы тела, морфопатологических изменений. Внутрижелудочное введение B65 крысам в высокой токсической дозе 2000 мг/кг (1/5 ЛД50) в течение месяца вызывает патоморфологические изменения структуры печени.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


2021 ◽  
Author(s):  
Jess Vergis ◽  
S V S Malik ◽  
Richa Pathak ◽  
Manesh Kumar ◽  
Nitin V Kurkure ◽  
...  

Abstract High throughput in vivo laboratory models is need for screening and identification of effective therapeutic agents to overcome microbial drug-resistance. This study was undertaken to evaluate in vivo antimicrobial efficacy of short-chain antimicrobial peptide- Cecropin A (1–7)-Melittin (CAMA) against three multi- drug resistant enteroaggregative Escherichia coli (MDR-EAEC) field isolates in a Galleria mellonella larval model. The minimum inhibitory concentration (MIC; 2.0 mg/L) and minimum bactericidal concentration (MBC; 4.0 mg/L) of CAMA were determined by microdilution assay. CAMA was found to be stable at high temperatures, physiological concentration of cationic salts and proteases; safe with sheep erythrocytes, secondary cell lines and commensal lactobacilli at lower MICs; and exhibited membrane permeabilisation. In vitro time-kill assay revealed concentration- and time-dependent clearance of MDR-EAEC in CAMA-treated groups at 30 min. CAMA- treated G. mellonella larvae exhibited an increased survival rate, reduced MDR-EAEC counts, immunomodulatory effect and proved non-toxic which concurred with histopathological findings. CAMA exhibited either an equal or better efficacy than the tested antibiotic control, meropenem. This study highlights the possibility of G. mellonella larvae as an excellent in vivo model for investigating the host-pathogen interaction, including the efficacy of antimicrobials against MDR-EAEC strains.


1987 ◽  
Vol 248 (1) ◽  
pp. 43-51 ◽  
Author(s):  
J Charlier ◽  
R Sanchez

In contrast with most aminoacyl-tRNA synthetases, the lysyl-tRNA synthetase of Escherichia coli is coded for by two genes, the normal lysS gene and the inducible lysU gene. During its purification from E. coli K12, lysyl-tRNA synthetase was monitored by its aminoacylation and adenosine(5′)tetraphospho(5′)adenosine (Ap4A) synthesis activities. Ap4A synthesis was measured by a new assay using DEAE-cellulose filters. The heterogeneity of lysyl-tRNA synthetase (LysRS) was revealed on hydroxyapatite; we focused on the first peak, LysRS1, because of its higher Ap4A/lysyl-tRNA activity ratio at that stage. Additional differences between LysRS1 and LysRS2 (major peak on hydroxyapatite) were collected. LysRS1 was eluted from phosphocellulose in the presence of the substrates, whereas LysRS2 was not. Phosphocellulose chromatography was used to show the increase of LysRS1 in cells submitted to heat shock. Also, the Mg2+ optimum in the Ap4A-synthesis reaction is much higher for LysRS1. LysRS1 showed a higher thermostability, which was specifically enhanced by Zn2+. These results in vivo and in vitro strongly suggest that LysRS1 is the heat-inducible lysU-gene product.


1984 ◽  
Vol 101 (1) ◽  
pp. 27-32 ◽  
Author(s):  
F. Mena ◽  
G. Martínez-Escalera ◽  
C. Clapp ◽  
C. E. Grosvenor

ABSTRACT Adenohypophysial prolactin of lactating rats was pulse-labelled by [3H]leucine injected i.v. at the time of removal of the pups. The [3H]prolactin concentration in the pituitary gland, analysed by polyacrylamide-gel electrophoresis, progressively fell as the time from labelling to removal of the pituitary gland increased from 8 to 24 h, which suggests that there was a loss of hormone as it aged within the gland. Suckling effectively provoked the depletion–transformation of total and [3H]prolactin (extracted at pH 7·2) when applied after 8 h but not when applied after either 16 or 24 h after removing the pups. In rats whose pups were removed for 8 h, suckling also depleted–transformed [3H]prolactin labelled 4 h, but not that labelled 1 h before suckling. The pituitary glands of other lactating rats were labelled with [3H]leucine injected i.v. at various times before removing the glands and incubating them in medium 199. The secretion into the medium of [3H]prolactin labelled either 4, 8, 16 or 24 h beforehand was maximal during the first 30 min then declined from 30 to 240 min of incubation. However, secretion of prolactin labelled 1 h and 10 min beforehand reached a maximum after 0·5–1 h and 2 h of incubation respectively, then remained constant during the remainder of the 4-h incubation period. The total 4-h secretion of [3H]prolactin was greatest (65% of preincubation concentration) from those glands labelled 4 h before in contrast to those labelled 10 min (15%) or 1 (38%), 8 (34%), 16 (18%) or 24 h (26%) before incubation. Taken together, these data suggest that prolactin synthesized 4 h earlier is more likely to be released in response to physiological stimuli than is more recently formed prolactin or prolactin which has remained in the pituitary gland for 16 h or longer. J. Endocr. (1984) 101, 27–32


Sign in / Sign up

Export Citation Format

Share Document