scholarly journals Accumulation of S-Adenosyl-l-Methionine Enhances Production of Actinorhodin but Inhibits Sporulation in Streptomyces lividans TK23

2003 ◽  
Vol 185 (2) ◽  
pp. 592-600 ◽  
Author(s):  
Dong-Jin Kim ◽  
Jung-Hyun Huh ◽  
Young-Yell Yang ◽  
Choong-Min Kang ◽  
In-Hyung Lee ◽  
...  

ABSTRACT S-Adenosyl-l-methionine synthetase (SAM-s) catalyzes the biosynthesis of SAM from ATP and l-methionine. Despite extensive research with many organisms, its role in Streptomyces sp. remains unclear. In the present study, the putative SAM-s gene was isolated from a spectinomycin producer, Streptomyces spectabilis. The purified protein from the transformed Escherichia coli with the isolated gene synthesized SAM from l-methionine and ATP in vitro, strongly indicating that the isolated gene indeed encoded the SAM-s protein. The overexpression of the SAM-s gene in Streptomyces lividans TK23 inhibited sporulation and aerial mycelium formation but enhanced the production of actinorhodin in both agar plates and liquid media. Surprisingly, the overexpressed SAM was proven by Northern analysis to increase the production of actinorhodin through the induction of actII-ORF4, a transcription activator of actinorhodin biosynthetic gene clusters. In addition, we found that a certain level of intracellular SAM is critical for the induction of antibiotic biosynthetic genes, since the control strain harboring only the plasmid DNA did not show any induction of actII-ORF4 until it reached a certain level of SAM in the cell. From these results, we concluded that the SAM plays important roles as an intracellular factor in both cellular differentiation and antibiotic production in Streptomyces sp.

2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Yanping Zhu ◽  
Peipei Zhang ◽  
Jing Zhang ◽  
Jiao Wang ◽  
Yinhua Lu ◽  
...  

ABSTRACT Regulation of antibiotic production by Streptomyces is complex. We report that the response regulator MtrA is a master regulator for antibiotic production in Streptomyces. Deletion of MtrA altered production of actinorhodin, undecylprodigiosin, calcium-dependent antibiotic, and the yellow-pigmented type I polyketide and resulted in altered expression of the corresponding gene clusters in S. coelicolor. Integrated in vitro and in vivo analyses identified MtrA binding sites upstream of cdaR, actII-orf4, and redZ and between cpkA and cpkD. MtrA disruption also led to marked changes in chloramphenicol and jadomycin production and in transcription of their biosynthetic gene clusters (cml and jad, respectively) in S. venezuelae, and MtrA sites were identified within cml and jad. MtrA also recognized predicted sites within the avermectin and oligomycin pathways in S. avermitilis and in the validamycin gene cluster of S. hygroscopicus. The regulator GlnR competed for several MtrA sites and impacted production of some antibiotics, but its effects were generally less dramatic than those of MtrA. Additional potential MtrA sites were identified in a range of other antibiotic biosynthetic gene clusters in Streptomyces species and other actinobacteria. Overall, our study suggests a universal role for MtrA in antibiotic production in Streptomyces and potentially other actinobacteria. IMPORTANCE In natural environments, the ability to produce antibiotics helps the producing host to compete with surrounding microbes. In Streptomyces, increasing evidence suggests that the regulation of antibiotic production is complex, involving multiple regulatory factors. The regulatory factor MtrA is known to have additional roles beyond controlling development, and using bioassays, transcriptional studies, and DNA-binding assays, our study identified MtrA recognition sequences within multiple antibiotic pathways and indicated that MtrA directly controls the production of multiple antibiotics. Our analyses further suggest that this role of MtrA is evolutionarily conserved in Streptomyces species, as well as in other actinobacterial species, and also suggest that MtrA is a major regulatory factor in antibiotic production and in the survival of actinobacteria in nature.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 424
Author(s):  
Osama G. Mohamed ◽  
Sadaf Dorandish ◽  
Rebecca Lindow ◽  
Megan Steltz ◽  
Ifrah Shoukat ◽  
...  

The antibiotic-resistant bacteria-associated infections are a major global healthcare threat. New classes of antimicrobial compounds are urgently needed as the frequency of infections caused by multidrug-resistant microbes continues to rise. Recent metagenomic data have demonstrated that there is still biosynthetic potential encoded in but transcriptionally silent in cultivatable bacterial genomes. However, the culture conditions required to identify and express silent biosynthetic gene clusters that yield natural products with antimicrobial activity are largely unknown. Here, we describe a new antibiotic discovery scheme, dubbed the modified crowded plate technique (mCPT), that utilizes complex microbial interactions to elicit antimicrobial production from otherwise silent biosynthetic gene clusters. Using the mCPT as part of the antibiotic crowdsourcing educational program Tiny Earth®, we isolated over 1400 antibiotic-producing microbes, including 62, showing activity against multidrug-resistant pathogens. The natural product extracts generated from six microbial isolates showed potent activity against vancomycin-intermediate resistant Staphylococcus aureus. We utilized a targeted approach that coupled mass spectrometry data with bioactivity, yielding a new macrolactone class of metabolite, desertomycin H. In this study, we successfully demonstrate a concept that significantly increased our ability to quickly and efficiently identify microbes capable of the silent antibiotic production.


2020 ◽  
Author(s):  
Audam Chhun ◽  
Despoina Sousoni ◽  
Maria del Mar Aguiló-Ferretjans ◽  
Lijiang Song ◽  
Christophe Corre ◽  
...  

AbstractBacteria from the Actinomycete family are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacteria Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide A but half of its putative BGCs are still orphan. Although previous studies have looked into using marine heterotrophs to induce orphan BGCs in Salinispora, the potential impact of co-culturing marine phototrophs with Salinispora has yet to be investigated. Following the observation of clear antimicrobial phenotype of the actinobacterium on a range of phytoplanktonic organisms, we here report the discovery of novel cryptic secondary metabolites produced by S. tropica in response to its co-culture with photosynthetic primary producers. An approach combining metabolomics and proteomics revealed that the photosynthate released by phytoplankton influences the biosynthetic capacities of S. tropica with both production of new molecules and the activation of orphan BGCs. Our work pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from actinobacteria.ImportanceThe alarming increase of antimicrobial resistance has generated an enormous interest in the discovery of novel active compounds. The isolation of new microbes to untap novel natural products is currently hampered because most biosynthetic gene clusters (BGC) encoded by these microorganisms are not expressed under standard laboratory conditions, i.e. mono-cultures. Here we show that co-culturing can be an easy way for triggering silent BGC. By combining state-of-the-art metabolomics and high-throughput proteomics, we characterized the activation of cryptic metabolites and silent biosynthetic gene clusters in the marine actinobacteria Salinispora tropica by the presence of phytoplankton photosynthate. We further suggest a mechanistic understanding of the antimicrobial effect this actinobacterium has on a broad range of prokaryotic and eukaryotic phytoplankton species and reveal a promising candidate for antibiotic production.


2018 ◽  
Vol 200 (21) ◽  
Author(s):  
Karla J. Esquilín-Lebrón ◽  
Tye O. Boynton ◽  
Lawrence J. Shimkets ◽  
Michael G. Thomas

ABSTRACTOne mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 fromMyxococcus xanthusDK1622 for characterization. TheM. xanthusDK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination ofin vivoandin vitroassays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping ofM. xanthusDK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a “universal” MLP for generating functional hybrid NRPSs.IMPORTANCEMbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP fromMyxococcus xanthusDK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a “universal” MLP during the construction of functional hybrid NRPSs.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Yunkun Liu ◽  
Weixin Tao ◽  
Shishi Wen ◽  
Zhengyuan Li ◽  
Anna Yang ◽  
...  

ABSTRACT The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, an RNA-guided nuclease for specific genome editing in vivo, has been adopted in a wide variety of organisms. In contrast, the in vitro application of the CRISPR/Cas9 system has rarely been reported. We present here a highly efficient in vitro CRISPR/Cas9-mediated editing (ICE) system that allows specific refactoring of biosynthetic gene clusters in Streptomyces bacteria and other large DNA fragments. Cleavage by Cas9 of circular pUC18 DNA was investigated here as a simple model, revealing that the 3′→5′ exonuclease activity of Cas9 generates errors with 5 to 14 nucleotides (nt) randomly missing at the editing joint. T4 DNA polymerase was then used to repair the Cas9-generated sticky ends, giving substantial improvement in editing accuracy. Plasmid pYH285 and cosmid 10A3, harboring a complete biosynthetic gene cluster for the antibiotics RK-682 and holomycin, respectively, were subjected to the ICE system to delete the rkD and homE genes in frame. Specific insertion of the ampicillin resistance gene (bla) into pYH285 was also successfully performed. These results reveal the ICE system to be a rapid, seamless, and highly efficient way to edit DNA fragments, and a powerful new tool for investigating and engineering biosynthetic gene clusters. IMPORTANCE Recent improvements in cloning strategies for biosynthetic gene clusters promise rapid advances in understanding and exploiting natural products in the environment. For manipulation of such biosynthetic gene clusters to generate valuable bioactive compounds, efficient and specific gene editing of these large DNA fragments is required. In this study, a highly efficient in vitro DNA editing system has been established. When combined with end repair using T4 DNA polymerase, Cas9 precisely and seamlessly catalyzes targeted editing, including in-frame deletion or insertion of the gene(s) of interest. This in vitro CRISPR editing (ICE) system promises a step forward in our ability to engineer biosynthetic pathways.


Author(s):  
Sanne Westhoff ◽  
Alexander Kloosterman ◽  
Stephan F. A. van Hoesel ◽  
Gilles P. van Wezel ◽  
Daniel E. Rozen

ABSTRACTOne of the most important ways that bacteria compete for resources and space is by producing antibiotics that inhibit competitors. Because antibiotic production is costly, the biosynthetic gene clusters coordinating their synthesis are under strict regulatory control and often require “elicitors” to induce expression, including cues from competing strains. Although these cues are common, they are not produced by all competitors and so the phenotypes causing induction remain unknown. By studying interactions between 24 antibiotic-producing streptomycetes we show that inhibition between competitors is common and occurs more frequently if strains are closely related. Next, we show that antibiotic production is more likely to be induced by cues from strains that are closely related or that share secondary metabolite biosynthetic gene clusters (BGCs). Unexpectedly, antibiotic production is less likely to be induced by competitors that inhibit the growth of a focal strain, indicating that cell damage is not a general cue for induction. In addition to induction, antibiotic production often decreased in the presence of a competitor, although this response was not associated with genetic relatedness or overlap in BGCs. Finally, we show that resource limitation increases the chance that antibiotic production declines during competion. Our results reveal the importance of social cues and resource availability in the dynamics of interference competition in streptomycetes.SIGNIFICANCE STATEMENTBacteria secrete antibiotics to inhibit their competitors, but the presence of competitors can determine whether these toxins are produced. Here, we study the role of the competitive and resource environment on antibiotic production in Streptomyces, bacteria renowned for their production of antibiotics. We show that Streptomyces are more likely to produce antibiotics when grown with closely related competitors or that share biosynthetic pathways for secondary metabolites, but not when they are threatened by competitor’s toxins, in contrast to predictions of the competition sensing hypothesis. Streptomyces also often reduce their output of antibiotics when grown with competitors, especially under nutrient limitation. Our findings highlight that interactions between the social and resource environments strongly regulate antibiotic production in these medicinally important bacteria.


Author(s):  
Chelsea L. Murphy ◽  
R. Yang ◽  
T. Decker ◽  
C. Cavalliere ◽  
V. Andreev ◽  
...  

Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, non-soil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes, and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of thirteen distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g. FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine-learning approaches based on a set of 634 genes informative of social lifestyle predicted a non-social behavior for Zodletone Myxococcota. Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities, but encoded genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 Mya in response to the rise of soil as a distinct habitat on earth. Importance The Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of non-soil, predominantly anaerobic habitats; and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA that represent novel, yet-uncultured, orders and families in the Myxococcota. The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes, and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of thirteen pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on earth.


2013 ◽  
Vol 394 (2) ◽  
pp. 251-259 ◽  
Author(s):  
Bertolt Gust ◽  
Kornelia Eitel ◽  
Xiaoyu Tang

Abstract The first step in the membrane cycle of reactions during peptidoglycan biosynthesis is the transfer of phospho-MurNAc-pentapeptide from UDP-MurNAc-pentapeptide to undecaprenyl phosphate, catalyzed by the integral membrane protein MraY translocase. Different MraY inhibitors are known and can be subdivided into classes depending on their structural composition. Caprazamycins belong to the liponucleoside class of antibiotics isolated from Streptomyces sp. MK730-62F2. They possess activity in vitro against Gram-positive bacteria, in particular against the genus Mycobacterium including Mycobacterium intracellulare, Mycobacterium avium and Mycobacterium tuberculosis. Caprazamycins and the structurally related liposidomycins and A-90289 share a unique composition of moieties. Their complex structure is derived from 5′-(β-O-aminoribosyl)-glycyluridine and comprises a unique N,N′-dimethyldiazepanone ring. Recently, the corresponding biosynthetic gene clusters of caprazamycins, liposidomycins and A-90289 have been discovered and will be compared in this review. New information is also emerging regarding the biosynthesis of liponucleoside antibiotics obtained by gene disruption experiments and biochemical investigations.


2007 ◽  
Vol 189 (14) ◽  
pp. 5284-5292 ◽  
Author(s):  
Nancy L. McKenzie ◽  
Justin R. Nodwell

ABSTRACT The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2∼P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2∼P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2∼P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.


Sign in / Sign up

Export Citation Format

Share Document