scholarly journals Expression and Regulation of a Silent Operon, hyf, Coding for Hydrogenase 4 Isoenzyme in Escherichia coli

2004 ◽  
Vol 186 (2) ◽  
pp. 580-587 ◽  
Author(s):  
William T. Self ◽  
Adnan Hasona ◽  
K. T. Shanmugam

ABSTRACT On the basis of hyf-lacZ fusion studies, the hyf operon of Escherichia coli, noted for encoding the fourth hydrogenase isoenzyme (HYD4), is not expressed at a significant level in a wild-type strain. However, mutant FhlA proteins (constitutive activators of the hyc-encoded hydrogenase 3 isoenzyme) activated hyf-lacZ. HyfR, an FhlA homolog encoded by the hyfR gene present at the end of the hyf operon, also activated transcription of hyf-lacZ but did so only when hyfR was expressed from a heterologous promoter. The HYD4 isoenzyme did not substitute for HYD3 in H2 production. Optimum expression of hyf-lacZ required the presence of cyclic AMP receptor protein-cyclic AMP complex and anaerobic conditions when HyfR was the activator.

1978 ◽  
Vol 24 (5) ◽  
pp. 629-631 ◽  
Author(s):  
La Verne Russell ◽  
Hiroshi Yamazaki

The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.


1988 ◽  
Vol 253 (3) ◽  
pp. 801-807 ◽  
Author(s):  
A M Gronenborn ◽  
R Sandulache ◽  
S Gärtner ◽  
G M Clore

Mutants in the cyclic AMP binding site of the cyclic AMP receptor protein (CRP) of Escherichia coli have been constructed by oligonucleotide-directed mutagenesis. They have been phenotypically characterized and their ability to enhance the expression of catabolite-repressible operons has been tested. In addition, the binding of cyclic nucleotides to the mutants has been investigated. It is shown that the six mutants made fall into one of three classes: (i) those that bind cyclic AMP better than the wild type protein (Ser-62→Ala) and result in greater transcription enhancement; (ii) those that bind cyclic AMP similarly to wild type (Ser-83→Ala, Ser-83→Lys, Thr-127→Ala, Ser-129→Ala); and (iii) those that do not bind cyclic AMP at all (Arg-82→Leu). Implications of these findings with respect to present models of the cyclic nucleotide binding pocket of CRP are discussed.


2005 ◽  
Vol 187 (19) ◽  
pp. 6678-6682 ◽  
Author(s):  
Tokiko Yoshimura-Suzuki ◽  
Ikuko Sagami ◽  
Nao Yokota ◽  
Hirofumi Kurokawa ◽  
Toru Shimizu

ABSTRACT Heme-regulated phosphodiesterase from Escherichia coli (DOSEc) catalyzes the hydrolysis of cyclic AMP (cAMP) in vitro and is regulated by the redox state of the bound heme. Changes in the redox state result in alterations in the three-dimensional structure of the enzyme, which is then transmitted to the functional domain to switch catalysis on or off. Because DOSEc was originally cloned from E. coli genomic DNA, it has not been known whether it is actually expressed in wild-type E. coli. In addition, the turnover number of DOSEc using cAMP as a substrate is only 0.15 min−1, which is relatively low for a physiologically relevant enzyme. In the present study, we demonstrated for the first time that the DOSEc gene and protein are expressed in wild-type E. coli, especially under aerobic conditions. We also developed a DOSEc gene knockout strain (Δdos). Interestingly, the knockout of dos caused excess accumulation of intracellular cAMP (26-fold higher than in the wild-type strain) under aerobic conditions, whereas accumulation of cAMP was not observed under anaerobic conditions. We also found differences in cell morphology and growth rate between the mutant cells and the wild-type strain. The changes in the knockout strain were partially complemented by introducing an expression plasmid for dos. Thus, the present study revealed that expression of DOSEc is regulated according to environmental O2 availability at the transcriptional level and that the concentration of cAMP in cells is regulated by DOSEc expression.


1987 ◽  
Vol 33 (8) ◽  
pp. 704-708 ◽  
Author(s):  
Jordi Barbé ◽  
Isidre Gibert ◽  
Ricardo Guerrero

Ultraviolet irradiation and cyclic AMP treatment produce a synergistic effect on the induction of the clel gene (coding for bacteriocin ColE1) in wild-type strains of Escherichia coli. On the other hand, cyclic AMP does not affect the uv-mediated induction of the recA, sfiA, and umuDC genes. Growth in the presence of glucose or glycerol does not affect the factor of amplification of the expression of the clel gene in uv-irradiated cells of the wild-type strain. Although, in cultures not treated with uv, the basal level of clel induction is about twice as high in cells grown with glycerol as in those using glucose as carbon source. In recA mutants neither simultaneous nor separate treatments with either cyclic AMP or uv irradiation induced transcription of the clel gene. Moreover, cyclic AMP induced a slight increase in clel gene expression in uv-irradiated cya strains, but not in the crp mutants. Nevertheless, the pattern of the uv-mediated induction of other SOS genes, such as umuDC, was the same in the cya and crp mutants, as in their parental wild-type strains. Furthermore, the uv-mediated induction of lambda prophage was decreased after either addition of cyclic AMP or growth in cultural conditions where the level of this nucleotide was low.


1998 ◽  
Vol 180 (23) ◽  
pp. 6117-6125 ◽  
Author(s):  
Jörgen Johansson ◽  
Björn Dagberg ◽  
Evelyne Richet ◽  
Bernt Eric Uhlin

ABSTRACT The nucleoid-associated protein H-NS is a major component of the chromosome-protein complex, and it is known to influence the regulation of many genes in Escherichia coli. Its role in gene regulation is manifested by the increased expression of several gene products in hns mutant strains. Here we report findings showing that H-NS and the largely homologous protein StpA play a positive role in the expression of genes in the maltose regulon. In studies with hns mutant strains and derivatives also deficient in the stpA gene, we found that expression of the LamB porin was decreased. Our results showed that the amounts of both LamB protein and lamB mRNA were greatly reduced inhns and hns-stpA mutant strains. The same results were obtained when we monitored the amount of transcription from the malEFG operon. The lamB gene is situated in the malKlamBmalM operon, which forms a divergent operon complex together with the malEFG operon. The activation of these genes depends on the action of the maltose regulon activator MalT and the global activator cyclic AMP receptor protein. Using a malT-lacZ translational fusion and antiserum raised against MalT to measure the expression of MalT, we detected reduced MalT expression in hns andhns-stpA mutant strains in comparison with the wild-type strain. Our results suggest that the H-NS and StpA proteins stimulate MalT translation and hence play a positive role in the control of the maltose regulon.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


1985 ◽  
Vol 229 (2) ◽  
pp. 453-458 ◽  
Author(s):  
M Okada ◽  
S Natori

When Escherichia coli was treated with sarcotoxin I, a potent bactericidal protein of Sarcophaga peregrina (fleshfly), K+ inside of the cells leaked out rapidly and the ATP pool of the cells rapidly decreased. These results suggested that the bactericidal effect of sarcotoxin I was due to its ionophore activity, and that it blocked the generation of ATP by inhibiting formation of the proton gradient essential for oxidative phosphorylation. This was confirmed by use of an uncA mutant, which was much less susceptible than the wild-type strain to sarcotoxin I under fixed ionic conditions.


2002 ◽  
Vol 68 (8) ◽  
pp. 4107-4110 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Tatsuya Maruo ◽  
Yoko Shirai ◽  
Junichi Kato ◽  
Tsukasa Ikeda ◽  
...  

ABSTRACT The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.


Sign in / Sign up

Export Citation Format

Share Document