scholarly journals Expression of Vibrio vulnificus Capsular Polysaccharide Inhibits Biofilm Formation

2004 ◽  
Vol 186 (3) ◽  
pp. 889-893 ◽  
Author(s):  
Lavin A. Joseph ◽  
Anita C. Wright

ABSTRACT Vibrio vulnificus is a human pathogen that produces lethal septicemia in susceptible persons, and the primary virulence factor for this organism is capsular polysaccharide (CPS). The role of the capsule in V. vulnificus biofilms was examined under a variety of conditions, by using either defined CPS mutants or spontaneous CPS expression phase variants derived from multiple strains. CPS expression was shown to inhibit attachment and biofilm formation, which contrasted with other studies describing polysaccharides as integral to biofilms in related species.

2001 ◽  
Vol 69 (11) ◽  
pp. 6893-6901 ◽  
Author(s):  
Anita C. Wright ◽  
Jan L. Powell ◽  
James B. Kaper ◽  
J. Glenn Morris

ABSTRACT Virulence of Vibrio vulnificus correlates with changes in colony morphology that are indicative of a reversible phase variation for expression of capsular polysaccharide (CPS). Encapsulated variants are virulent with opaque colonies, whereas phase variants with reduced CPS expression are attenuated and are translucent. Using TnphoA mutagenesis, we identified a V.vulnificus CPS locus, which included an upstreamops element, a wza gene (wza Vv), and several open reading frames with homology to CPS biosynthetic genes. This genetic organization is characteristic of group 1 CPS operons. The wzagene product is required for transport of CPS to the cell surface inEscherichia coli. Polar transposon mutations inwza Vv eliminated expression of downstream biosynthetic genes, confirming operon structure. On the other hand, nonpolar inactivation of wza Vv was specific for CPS transport, did not alter CPS biosynthesis, and could be complemented in trans. Southern analysis of CPS phase variants revealed deletions or rearrangements at this locus. A survey of environmental isolates indicated a correlation between deletions inwza Vv and loss of virulent phenotype, suggesting a genetic mechanism for CPS phase variation. Full virulence in mice required surface expression of CPS and supported the essential role of capsule in the pathogenesis of V.vulnificus.


2010 ◽  
Vol 13 (3) ◽  
pp. 643-654 ◽  
Author(s):  
Katherine L. Garrison-Schilling ◽  
Brenda L. Grau ◽  
Kevin S. McCarter ◽  
Brett J. Olivier ◽  
Nicole E. Comeaux ◽  
...  

Author(s):  
B. D. Tall ◽  
R. T. Gray ◽  
D. B. Shah

Vibrio vulnificus, an opportunistic human pathogen, is found as member of the normal microflora of shellfish and other seafoods, many of which are eaten raw. Though usually not harmful, V. vulnificus is responsible for causing fulminating septicemia in immunocompromised individuals. In previous light microscopic studies, we showed data suggesting that isogenic unencapsulated phase variants were more adherent to HeLa cells than were counterpart encapsulated phase variants. In this study, we extended our observations by comparing phase variant capsular morphology stained with Alcian blue (AB) and Ruthenium red (RR), and investigated the dynamics of biofilm formation by these organisms to glass coverslips (CS) using quantitative plate counts and scanning electron microscopy (SEM).To characterize the morphology of capsules expressed by these organisms, we stained cells grown on trypticase soy agar containing 1 % NaCl (TSA/NaCl) with AB and then prepared them for electron microscopy (EM) according to the method described by Hendley et al.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
You-Chul Jung ◽  
Mi-Ae Lee ◽  
Han-Shin Kim ◽  
Kyu-Ho Lee

AbstractBiofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.


2018 ◽  
Vol 86 (9) ◽  
Author(s):  
In Hwang Kim ◽  
So-Yeon Kim ◽  
Na-Young Park ◽  
Yancheng Wen ◽  
Keun-Woo Lee ◽  
...  

ABSTRACTVibrio vulnificus, an opportunistic human pathogen, produces cyclo-(l-Phe-l-Pro) (cFP), which serves as a signaling molecule controlling the ToxR-dependent expression of innate bacterial genes, and also as a virulence factor eliciting pathogenic effects on human cells by enhancing intracellular reactive oxygen species levels. We found that cFP facilitated the protection ofV. vulnificusagainst hydrogen peroxide. At a concentration of 1 mM, cFP enhanced the level of the transcriptional regulator RpoS, which in turn induced expression ofkatG, encoding hydroperoxidase I, an enzyme that detoxifies H2O2to overcome oxidative stress. We found that cFP upregulated the transcription of the histone-like proteins vHUα and vHUβ through the cFP-dependent regulator LeuO. LeuO binds directly to upstream regions ofvhuAandvhuBto enhance transcription. vHUα and vHUβ then enhance the level of RpoS posttranscriptionally by stabilizing the mRNA. This cFP-mediated ToxR-LeuO-vHUαβ-RpoS pathway also upregulates genes known to be members of the RpoS regulon, suggesting that cFP acts as a cue for the signaling pathway responsible for both the RpoS and the LeuO regulons. Taken together, this study shows that cFP plays an important role as a virulence factor, as well as a signal for the protection of the cognate pathogen.


2013 ◽  
Vol 90 (4) ◽  
pp. 841-857 ◽  
Author(s):  
Kyung-Jo Lee ◽  
Jeong-A Kim ◽  
Won Hwang ◽  
Soon-Jung Park ◽  
Kyu-Ho Lee

mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Laura R. Marks ◽  
Ryan M. Reddinger ◽  
Anders P. Hakansson

ABSTRACTTransformation of genetic material between bacteria was first observed in the 1920s usingStreptococcus pneumoniaeas a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneumococcal nasopharyngeal carriage, which we have recently shown is associated with biofilm growth, and is associated with cocolonization with multiple strains. However, no studies to date have comprehensively investigated genetic exchange during cocolonizationin vitroandin vivoor the role of the nasopharyngeal environment in these processes. In this study, we show that genetic exchange during dual-strain carriagein vivois extremely efficient (10−2) and approximately 10,000,000-fold higher than that measured during septic infection (10−9). This high transformation efficiency was associated with environmental conditions exclusive to the nasopharynx, including the lower temperature of the nasopharynx (32 to 34°C), limited nutrient availability, and interactions with epithelial cells, which were modeled in a novel biofilm modelin vitrothat showed similarly high transformation efficiencies. The nasopharyngeal environmental factors, combined, were critical for biofilm formation and induced constitutive upregulation of competence genes and downregulation of capsule that promoted transformation. In addition, we show that dual-strain carriagein vivoand biofilms formedin vitrocan be transformed during colonization to increase their pneumococcal fitness and also, importantly, that bacteria with lower colonization ability can be protected by strains with higher colonization efficiency, a process unrelated to genetic exchange.IMPORTANCEAlthough genetic exchange between pneumococcal strains is known to occur primarily during colonization of the nasopharynx and colonization is associated with biofilm growth, this is the first study to comprehensively investigate transformation in this environment and to analyze the role of environmental and bacterial factors in this process. We show that transformation efficiency during cocolonization by multiple strains is very high (around 10−2). Furthermore, we provide novel evidence that specific aspects of the nasopharyngeal environment, including lower temperature, limited nutrient availability, and epithelial cell interaction, are critical for optimal biofilm formation and transformation efficiency and result in bacterial protein expression changes that promote transformation and fitness of colonization-deficient strains. The results suggest that cocolonization in biofilm communities may have important clinical consequences by facilitating the spread of antibiotic resistance and enabling serotype switching and vaccine escape as well as protecting and retaining poorly colonizing strains in the pneumococcal strain pool.


Microbiology ◽  
2010 ◽  
Vol 156 (12) ◽  
pp. 3722-3733 ◽  
Author(s):  
Julie D. Gauthier ◽  
Melissa K. Jones ◽  
Patrick Thiaville ◽  
Jennifer L. Joseph ◽  
Rick A. Swain ◽  
...  

The GacS/GacA two-component signal transduction system regulates virulence, biofilm formation and symbiosis in Vibrio species. The present study investigated this regulatory pathway in Vibrio vulnificus, a human pathogen that causes life-threatening disease associated with the consumption of raw oysters and wound infections. Small non-coding RNAs (csrB1, csrB2, csrB3 and csrC) commonly regulated by the GacS/GacA pathway were decreased (P<0.0003) in a V. vulnificus CMCP6 ΔgacA : : aph mutant compared with the wild-type parent, and expression was restored by complementation of the gacA deletion mutation in trans. Of the 20 genes examined by RT-PCR, significant reductions in the transcript levels of the mutant in comparison with the wild-type strain were observed only for genes related to motility (flaA), stationary phase (rpoS) and protease (vvpE) (P=0.04, 0.01 and 0.002, respectively). Swimming motility, flagellation and opaque colony morphology indicative of capsular polysaccharide (CPS) were unchanged in the mutant, while cytotoxicity, protease activity, CPS phase variation and the ability to acquire iron were decreased compared with the wild-type (P<0.01). The role of gacA in virulence of V. vulnificus was also demonstrated by significant impairment in the ability of the mutant strain to cause either skin (P<0.0005) or systemic infections (P<0.02) in subcutaneously inoculated, non-iron-treated mice. However, the virulence of the mutant was equivalent to that of the wild-type in iron-treated mice, demonstrating that the GacA pathway in V. vulnificus regulates the virulence of this organism in an iron-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document