scholarly journals Conserved Target for Group II Intron Insertion in Relaxase Genes of Conjugative Elements of Gram-Positive Bacteria

2004 ◽  
Vol 186 (8) ◽  
pp. 2393-2401 ◽  
Author(s):  
Jack H. Staddon ◽  
Edward M. Bryan ◽  
Dawn A. Manias ◽  
Gary M. Dunny

ABSTRACT The lactococcal group II intron Ll.ltrB interrupts the ltrB relaxase gene within a region that encodes a conserved functional domain. Nucleotides essential for the homing of Ll.ltrB into an intronless version of ltrB are found exclusively at positions required to encode amino acids broadly conserved in a family of relaxase proteins of gram-positive bacteria. Two of these relaxase genes, pcfG from the enterococcal plasmid pCF10 and the ORF4 gene in the streptococcal conjugative transposon Tn5252, were shown to support Ll.ltrB insertion into the conserved motif at precisely the site predicted by sequence homology with ltrB. Insertion occurred through a mechanism indistinguishable from retrohoming. Splicing and retention of conjugative function was demonstrated for pCF10 derivatives containing intron insertions. Ll.ltrB targeting of a conserved motif of a conjugative element suggests a mechanism for group II intron dispersal among bacteria. Additional support for this mechanism comes from sequence analysis of the insertion sites of the E.c.I4 family of bacterial group II introns.

2005 ◽  
Vol 49 (6) ◽  
pp. 2512-2514 ◽  
Author(s):  
Marianne Sunde

ABSTRACT An Escherichia coli strain, isolated from wild reindeer in a remote mountain area, contained a class 1 integron with two unusual features: a group II intron and a cassette with homology to a superintegron cassette. Alignments indicate that attC sites of gene cassettes may be insertion sites for introns.


Gene ◽  
1996 ◽  
Vol 174 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Peter Mullany ◽  
Mark Pallen ◽  
Mark Wilks ◽  
John R. Stephen ◽  
Soad Tabaqchali

2021 ◽  
Vol 8 ◽  
Author(s):  
Feng Liu ◽  
James T. Melton

To understand the evolution of Ulva chloroplast genomes at intraspecific and interspecific levels, in this study, three complete chloroplast genomes of Ulva compressa Linnaeus were sequenced and compared with the available Ulva cpDNA data. Our comparative analyses unveiled many noticeable findings. First, genome size variations of Ulva cpDNAs at intraspecific and interspecific levels were mainly caused by differences in gain or loss of group I/II introns, integration of foreign DNA fragments, and content of non-coding intergenic spacer regions. Second, chloroplast genomes of U. compressa shared the same 100 conserved genes as other Ulva cpDNA, whereas Ulva flexuosa appears to be the only Ulva species with the minD gene retained in its cpDNA. Third, five types of group I introns, most of which carry a LAGLIDADG or GIY-YIG homing endonuclease, and three of group II introns, usually encoding a reverse transcriptase/maturase, were detected at 26 insertion sites of 14 host genes in the 23 Ulva chloroplast genomes, and many intron insertion-sites have been found for the first time in Chlorophyta. Fourth, one degenerate group II intron previously ignored has been detected in the infA genes of all Ulva species, but not in the closest neighbor, Pseudoneochloris marina, and the other chlorophycean taxa, indicating that it should be the result of an independent invasion event that occurred in a common ancestor of Ulva species. Finally, the seven U. compressa cpDNAs represented a novel gene order which was different from that of other Ulva cpDNAs. The structure of Ulva chloroplast genomes is not conserved, but remarkably plastic, due to multiple rearrangement events.


PLoS Biology ◽  
2008 ◽  
Vol 6 (6) ◽  
pp. e150 ◽  
Author(s):  
Junhua Zhao ◽  
Wei Niu ◽  
Jun Yao ◽  
Sabine Mohr ◽  
Edward M Marcotte ◽  
...  

1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


Author(s):  
B.K. Ghosh

Periplasm of bacteria is the space outside the permeability barrier of plasma membrane but enclosed by the cell wall. The contents of this special milieu exterior could be regulated by the plasma membrane from the internal, and by the cell wall from the external environment of the cell. Unlike the gram-negative organism, the presence of this space in gram-positive bacteria is still controversial because it cannot be clearly demonstrated. We have shown the importance of some periplasmic bodies in the secretion of penicillinase from Bacillus licheniformis.In negatively stained specimens prepared by a modified technique (Figs. 1 and 2), periplasmic space (PS) contained two kinds of structures: (i) fibrils (F, 100 Å) running perpendicular to the cell wall from the protoplast and (ii) an array of vesicles of various sizes (V), which seem to have evaginated from the protoplast.


Author(s):  
Jacob S. Hanker ◽  
Paul R. Gross ◽  
Beverly L. Giammara

Blood cultures are positive in approximately only 50 per cent of the patients with nongonococcal bacterial infectious arthritis and about 20 per cent of those with gonococcal arthritis. But the concept that gram-negative bacteria could be involved even in chronic arthritis is well-supported. Gram stains are more definitive in staphylococcal arthritis caused by gram-positive bacteria than in bacterial arthritis due to gram-negative bacteria. In the latter situation where gram-negative bacilli are the problem, Gram stains are helpful for 50% of the patients; they are only helpful for 25% of the patients, however, where gram-negative gonococci are the problem. In arthritis due to gram-positive Staphylococci. Gramstained smears are positive for 75% of the patients.


Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


Sign in / Sign up

Export Citation Format

Share Document