scholarly journals Peculiar Properties of DsbA in Its Export across the Escherichia coli Cytoplasmic Membrane

2005 ◽  
Vol 187 (12) ◽  
pp. 3997-4004 ◽  
Author(s):  
Nobuyuki Shimohata ◽  
Yoshinori Akiyama ◽  
Koreaki Ito

ABSTRACT Export of DsbA, a protein disulfide bond-introducing enzyme, across the Escherichia coli cytoplasmic membrane was studied with special reference to the effects of various mutations affecting translocation factors. It was noted that both the internalized precursor retaining the signal peptide and the periplasmic mature product fold rapidly into a protease-resistant structure and they exhibited anomalies in sodium dodecyl sulfate-polyacrylamide gel electrophoresis in that the former migrated faster than the latter. The precursor, once accumulated, was not exported posttranslationally. DsbA export depended on the SecY translocon, the SecA ATPase, and Ffh (signal recognition particle), but not on SecB. SecY mutations, such as secY39 and secY205, that severely impair translocation of a number of secretory substrates by interfering with SecA actions only insignificantly impaired the DsbA export. In contrast, secY125, affecting a periplasmic domain and impairing a late step of translocation, exerted strong export inhibition of both classes of proteins. These results suggest that DsbA uses not only the signal recognition particle targeting pathway but also a special route of translocation through the translocon, which is hence suggested to actively discriminate preproteins.

FEBS Letters ◽  
1996 ◽  
Vol 399 (3) ◽  
pp. 307-309 ◽  
Author(s):  
Jan-Willem L. de Gier ◽  
Parvaneh Mansournia ◽  
Quido A. Valent ◽  
Gregory J. Phillips ◽  
Joen Luirink ◽  
...  

1999 ◽  
Vol 181 (15) ◽  
pp. 4561-4567 ◽  
Author(s):  
John A. Newitt ◽  
Nancy D. Ulbrandt ◽  
Harris D. Bernstein

ABSTRACT The signal recognition particle (SRP) targeting pathway is required for the efficient insertion of many polytopic inner membrane proteins (IMPs) into the Escherichia coli inner membrane, but in the absence of SRP protein export proceeds normally. To define the properties of IMPs that impose SRP dependence, we analyzed the targeting requirements of bitopic IMPs that are structurally intermediate between exported proteins and polytopic IMPs. We found that disruption of the SRP pathway inhibited the insertion of only a subset of bitopic IMPs. Studies on a model bitopic AcrB-alkaline phosphatase fusion protein (AcrB 265-AP) showed that the SRP requirement for efficient insertion correlated with the presence of a large periplasmic domain (P1). As previously reported, perturbation of the SRP pathway also affected the insertion of a polytopic AcrB-AP fusion. Even exhaustive SRP depletion, however, failed to block the insertion of any AcrB derivative by more than 50%. Taken together, these data suggest that many proteins that are normally targeted by SRP can utilize alternative targeting pathways and that the structure of both hydrophilic and membrane-spanning domains determines the degree to which the biogenesis of a protein is SRP dependent.


1986 ◽  
Vol 64 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Malcolm B. Perry ◽  
Leann MacLean ◽  
Douglas W. Griffith

The phenol-phase soluble lipopolysaccharide isolated from Escherichia coli 0:157 by the hot phenol–water extraction procedure was shown by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, periodate oxidation, methylation, and 13C and 1H nuclear magnetic resonance studies to be an unbranched linear polysaccharide with a tetrasaccharide repeating unit having the structure:[Formula: see text]The serological cross-reactivity of E. coli 0:157 with Brucella abortus, Yersinia enterocolitica (serotype 0:9), group N Salmonella, and some other E. coli species can be related immunochemically to the presence of 1,2-glycosylated N-acylated 4-amino-4,6-dideoxy-α-D-mannopyranosyl residues in the O-chains of their respective lipopolysaccharides.


2001 ◽  
Vol 183 (21) ◽  
pp. 6466-6477 ◽  
Author(s):  
Christopher Kirkpatrick ◽  
Lisa M. Maurer ◽  
Nikki E. Oyelakin ◽  
Yuliya N. Yoncheva ◽  
Russell Maurer ◽  
...  

ABSTRACT Acetate and formate are major fermentation products ofEscherichia coli. Below pH 7, the balance shifts to lactate; an oversupply of acetate or formate retards growth. E. coli W3110 was grown with aeration in potassium-modified Luria broth buffered at pH 6.7 in the presence or absence of added acetate or formate, and the protein profiles were compared by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Acetate increased the steady-state expression levels of 37 proteins, including periplasmic transporters for amino acids and peptides (ArtI, FliY, OppA, and ProX), metabolic enzymes (YfiD and GatY), the RpoS growth phase regulon, and the autoinducer synthesis protein LuxS. Acetate repressed 17 proteins, among them phosphotransferase (Pta). An ackA-pta deletion, which nearly eliminates interconversion between acetate and acetyl-coenzyme A (acetyl-CoA), led to elevated basal levels of 16 of the acetate-inducible proteins, including the RpoS regulon. Consistent with RpoS activation, the ackA-pta strain also showed constitutive extreme-acid resistance. Formate, however, repressed 10 of the acetate-inducible proteins, including the RpoS regulon. Ten of the proteins with elevated basal levels in the ackA-ptastrain were repressed by growth of the mutant with formate; thus, the formate response took precedence over the loss of theackA-pta pathway. The similar effects of exogenous acetate and the ackA-pta deletion, and the opposite effect of formate, could have several causes; one possibility is that the excess buildup of acetyl-CoA upregulates stress proteins but excess formate depletes acetyl-CoA and downregulates these proteins.


2001 ◽  
Vol 183 (18) ◽  
pp. 5230-5238 ◽  
Author(s):  
Geoffrey R. Langen ◽  
Jill R. Harper ◽  
Thomas J. Silhavy ◽  
S. Peter Howard

ABSTRACT DegP is a periplasmic protease that is a member of both the ςE and Cpx extracytoplasmic stress regulons ofEscherichia coli and is essential for viability at temperatures above 42°C. [U-14C]acetate labeling experiments demonstrated that phospholipids were degraded indegP mutants at elevated temperatures. In addition, chloramphenicol acetyltransferase, β-lactamase, and β-galactosidase assays as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that large amounts of cellular proteins are released from degP cells at the nonpermissive temperature. A mutation in pldA, which encodes outer membrane phospholipase A (OMPLA), was found to rescue degPcells from the temperature-sensitive phenotype. pldA degP mutants had a normal plating efficiency at 42°C, displayed increased viability at 44°C, showed no degradation of phospholipids, and released far lower amounts of cellular protein to culture supernatants. degP and pldA degP mutants containing chromosomal lacZ fusions to Cpx and ςE regulon promoters indicated that both regulons were activated in the pldA mutants. The overexpression of the envelope lipoprotein, NlpE, which induces the Cpx regulon, was also found to suppress the temperature-sensitive phenotype ofdegP mutants but did not prevent the degradation of phospholipids. These results suggest that the absence of OMPLA corrects the degP temperature-sensitive phenotype by inducing the Cpx and ςE regulons rather than by inactivating the phospholipase per se.


2007 ◽  
Vol 189 (20) ◽  
pp. 7273-7280 ◽  
Author(s):  
Dirk-Jan Scheffers ◽  
Carine Robichon ◽  
Gert Jan Haan ◽  
Tanneke den Blaauwen ◽  
Gregory Koningstein ◽  
...  

ABSTRACT The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.


Sign in / Sign up

Export Citation Format

Share Document