scholarly journals Presence of Multiple Sites Containing Polar Material in Spherical Escherichia coli Cells That Lack MreB

2005 ◽  
Vol 187 (17) ◽  
pp. 6187-6196 ◽  
Author(s):  
Trine Nilsen ◽  
Arthur W. Yan ◽  
Gregory Gale ◽  
Marcia B. Goldberg

ABSTRACT In rod-shaped bacteria, certain proteins are specifically localized to the cell poles. The nature of the positional information that leads to the proper localization of these proteins is unclear. In a screen for factors required for the localization of the Shigella sp. actin assembly protein IcsA to the bacterial pole, a mutant carrying a transposon insertion in mreB displayed altered targeting of IcsA. The phenotype of cells containing a transposon insertion in mreB was indistinguishable from that of cells containing a nonpolar mutation in mreB or that of wild-type cells treated with the MreB inhibitor A22. In cells lacking MreB, a green fluorescent protein (GFP) fusion to a cytoplasmic derivative of IcsA localized to multiple sites. Secreted full-length native IcsA was present in multiple faint patches on the surfaces of these cells in a pattern similar to that seen for the cytoplasmic IcsA-GFP fusion. EpsM, the polar Vibrio cholerae inner membrane protein, also localized to multiple sites in mreB cells and colocalized with IcsA, indicating that localization to multiple sites is not unique to IcsA. Our results are consistent with the requirement, either direct or indirect, for MreB in the restriction of certain polar material to defined sites within the cell and, in the absence of MreB, with the formation of ectopic sites containing polar material.

2013 ◽  
Vol 79 (20) ◽  
pp. 6362-6368 ◽  
Author(s):  
Ying Xu ◽  
Bing Chen ◽  
Hongjun Chao ◽  
Ning-Yi Zhou

ABSTRACTEscherichia coliK-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome,mhpTwas proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated thatmhpTis essential for 3HPP catabolism inE. coliK-12 W3110 at pH 8.2. Uptake assays with14C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpTcontaining recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpTcontaining the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital forE. coliK-12 W3110 growth on this substrate under basic conditions.


Science ◽  
2020 ◽  
Vol 370 (6514) ◽  
pp. 321-327 ◽  
Author(s):  
Kristina S. Stapornwongkul ◽  
Marc de Gennes ◽  
Luca Cocconi ◽  
Guillaume Salbreux ◽  
Jean-Paul Vincent

Morphogen gradients provide positional information during development. To uncover the minimal requirements for morphogen gradient formation, we have engineered a synthetic morphogen in Drosophila wing primordia. We show that an inert protein, green fluorescent protein (GFP), can form a detectable diffusion-based gradient in the presence of surface-associated anti-GFP nanobodies, which modulate the gradient by trapping the ligand and limiting leakage from the tissue. We next fused anti-GFP nanobodies to the receptors of Dpp, a natural morphogen, to render them responsive to extracellular GFP. In the presence of these engineered receptors, GFP could replace Dpp to organize patterning and growth in vivo. Concomitant expression of glycosylphosphatidylinositol (GPI)–anchored nonsignaling receptors further improved patterning, to near–wild-type quality. Theoretical arguments suggest that GPI anchorage could be important for these receptors to expand the gradient length scale while at the same time reducing leakage.


2021 ◽  
Author(s):  
Jessica G. Perez ◽  
Erik D. Carlson ◽  
Oliver Weisser ◽  
Camila Kofman ◽  
Kosuke Seki ◽  
...  

AbstractA genomically recoded Escherichia coli strain that lacks all amber codons and release factor 1 (C321.ΔA) enables efficient genetic encoding of chemically diverse, non-canonical amino acids (ncAAs) into proteins. While C321.ΔA has opened new opportunities in chemical and synthetic biology, this strain has not been optimized for protein production, limiting its utility in widespread industrial and academic applications. To address this limitation, we describe the construction of a series of genomically recoded organisms that are optimized for cellular protein production. We demonstrate that the functional deactivation of nucleases (e.g., rne, endA) and proteases (e.g., lon) increases production of wild-type superfolder green fluorescent protein (sfGFP) and sfGFP containing two ncAAs up to ∼5-fold. Additionally, we introduce a genomic IPTG-inducible T7 RNA polymerase (T7RNAP) cassette into these strains. Using an optimized platform, we demonstrated the ability to introduce 2 identical N6-(propargyloxycarbonyl)-L-Lysine residues site specifically into sfGFP with a 17-fold improvement in production relative to the parent. We envision that our library of organisms will provide the community with multiple options for increased expression of proteins with new and diverse chemistries.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2005 ◽  
Vol 25 (12) ◽  
pp. 4977-4992 ◽  
Author(s):  
Hao G. Nguyen ◽  
Dharmaraj Chinnappan ◽  
Takeshi Urano ◽  
Katya Ravid

ABSTRACT The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.


2008 ◽  
Vol 74 (23) ◽  
pp. 7431-7433 ◽  
Author(s):  
Mónica Martínez-Alonso ◽  
Nuria González-Montalbán ◽  
Elena García-Fruitós ◽  
Antonio Villaverde

ABSTRACT We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure.


Sign in / Sign up

Export Citation Format

Share Document