scholarly journals The Periplasmic α-Carbonic Anhydrase Activity of Helicobacter pylori Is Essential for Acid Acclimation

2005 ◽  
Vol 187 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Elizabeth A. Marcus ◽  
Amiel P. Moshfegh ◽  
George Sachs ◽  
David R. Scott

ABSTRACT The role of the periplasmic α-carbonic anhydrase (α-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since α-CA catalyzes the conversion of CO2 to HCO3 −, the role of CO2 in periplasmic buffering was studied using an α-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that α-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the α-CA knockout. In the mutant or in the presence of acetazolamide, there was an ∼3 log10 decrease in acid survival. In acid, absence of α-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the α-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of α-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3 − by the periplasmic α-CA.

1999 ◽  
Vol 19 (1) ◽  
pp. 495-504 ◽  
Author(s):  
John Sok ◽  
Xiao-Zhong Wang ◽  
Nikoleta Batchvarova ◽  
Masahiko Kuroda ◽  
Heather Harding ◽  
...  

ABSTRACT CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPβ dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducibleCA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VIexpression in c/ebpβ−/− cells by exogenous C/EBPβ and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Christopher McDonald ◽  
Goran Jovanovic ◽  
Oscar Ces ◽  
Martin Buck

ABSTRACTPhage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled,in vitromethodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing rolesin vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. Thisin vitrorecapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mountedin vivowhen a cell's inner membrane experiences increased SCE stress.IMPORTANCEAll cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response.


1980 ◽  
Vol 1 (4) ◽  
pp. 333-339
Author(s):  
Arthur M. Feldman ◽  
Mel H. Epstein ◽  
Fallon Maylack ◽  
Saul W. Brusilow

2000 ◽  
Vol 68 (9) ◽  
pp. 5225-5233 ◽  
Author(s):  
Véronique Hofman ◽  
Vittorio Ricci ◽  
Antoine Galmiche ◽  
Patrick Brest ◽  
Patrick Auberger ◽  
...  

ABSTRACT Helicobacter pylori infection can induce polymorphonuclear leukocyte (PMNL) infiltration of the gastric mucosa, which characterizes acute chronic gastritis. The mechanisms underlying this process are poorly documented. The lack of an in vitro model has considerably impaired the study of transepithelial migration of PMNL induced by H. pylori. In the present work, we used confluent polarized monolayers of the human intestinal cell line T84 grown on permeable filters to analyze the epithelial PMNL response induced by broth culture filtrates (BCFs) and bacterial suspensions from different strains of H. pylori. We have evaluated the role of the vacuolating cytotoxin VacA and of the cagpathogenicity island (PAI) of H. pylori in PMNL migration via their effects on T84 epithelial cells. We noted no difference in the rates of PMNL transepithelial migration after epithelial preincubation with bacterial suspensions or with BCFs of VacA-negative or VacA-positive H. pylori strains. In contrast, PMNL transepithelial migration was induced after incubation of the T84 cells with cag PAI-positive and cagE-positiveH. pylori strains. Finally, PMNL migration was correlated with a basolateral secretion of interleukin-8 by T84 cells, thus creating a subepithelial chemotactic gradient for PMNL. These data provide evidence that the vacuolating cytotoxin VacA is not involved in PMNL transepithelial migration and that the cag PAI, with a pivotal role for the cagE gene, provokes a transcellular signal across T84 monolayers, inducing a subepithelial PMNL response.


1956 ◽  
Vol 34 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Ann D. Anderson ◽  
Ralph B. March

Carbonic anhydrase activity has been demonstrated in vitro in preparations of the head, fat body, and gut of the American cockroach, Periplaneta americana (L.), and in the adult housefly, Musca domestica L. The insect factor, which is soluble in aqueous media and can be separated from the particulate cell fragments of insect tissue homogenates is heat labile and sensitive to cyanide inactivation. It is strongly inhibited by sulphanilamide, p-aminoethylphenyl-sulphonamide, and p-chlorphenylsulphonamide. No inhibition has been found with N-substituted sulphonamides or with any of the organic insecticides examined, including DDT, lindane, dieldrin, nicotine, rotenone, pyrethrins, and para-oxon. Sensitivity of carbonic anhydrase to sulphonamides having an intact—SO2NH2 group is also characteristic of mammalian preparations. The data indicate that inhibition of insect carbonic anhydrase cannot be an important factor in the mode of action of DDT or other organic insecticides.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Qun Chen ◽  
Thomas Ross ◽  
Ying Hu ◽  
Edward J. Lesnefsky

Myocardial injury is increased in the aged heart following ischemia-reperfusion (ISC-REP) compared to adult hearts. Intervention at REP with ischemic postconditioning decreases injury in the adult heart by attenuating mitochondrial driven cell injury. Unfortunately, postconditioning is ineffective in aged hearts. Blockade of electron transport at the onset of REP with the reversible inhibitor amobarbital (AMO) decreases injury in adult hearts. We tested if AMO treatment at REP protects the aged heart via preservation of mitochondrial integrity. Buffer-perfused elderly Fischer 344 24 mo. rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was given for 3 min at the onset of REP. Subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria were isolated after REP. Oxidative phosphorylation (OXPHOS) and mitochondrial inner membrane potential were measured. AMO treatment at REP decreased cardiac injury. Compared to untreated ISC-REP, AMO improved inner membrane potential in SSM and IFM during REP, indicating preserved inner membrane integrity. Thus, direct pharmacologic modulation of electron transport at REP protects mitochondria and decreases cardiac injury in the aged heart, even when signaling-induced pathways of postconditioning that are upstream of mitochondria are ineffective.


Reproduction ◽  
2001 ◽  
pp. 89-96 ◽  
Author(s):  
AA Murray ◽  
MD Molinek ◽  
SJ Baker ◽  
FN Kojima ◽  
MF Smith ◽  
...  

Ascorbic acid has three known functions: it is necessary for collagen synthesis, promotes steroidogenesis and acts as an antioxidant. Within the ovary, most studies have concentrated on the role of ascorbic acid in luteal formation and regression and little is known about the function of this vitamin in follicular growth and development. Follicular growth and development were investigated in this study using an individual follicle culture system that allows the growth of follicles from the late preantral stage to Graafian morphology. Follicles were isolated from prepubertal mice and cultured for 6 days. Control media contained serum and human recombinant FSH. Further groups of follicles were cultured in the same media but with the addition of ascorbic acid at concentrations of either 28 or 280 micromol l(-1). Addition of ascorbic acid at the higher concentration significantly increased the percentage of follicles that maintained basement membrane integrity throughout culture (P < 0.001). Ascorbic acid had no effect on the growth of the follicles or on oestradiol production. Metalloproteinase 2 activity tended to increase at the higher concentration of ascorbic acid and there was a significant concomitant increase in the activity of tissue inhibitor of metalloproteinase 1 (P < 0.01). Follicles cultured without the addition of serum but with FSH and selenium in the culture media underwent apoptosis. Addition of ascorbic acid to follicles cultured under serum-free conditions significantly reduced apoptosis (P < 0.05). From these data it is concluded that ascorbic acid is necessary for remodelling the basement membrane during follicular growth and that the ability of follicles to uptake ascorbic acid confers an advantage in terms of granulosa cell survival.


Physiology ◽  
2005 ◽  
Vol 20 (6) ◽  
pp. 429-438 ◽  
Author(s):  
George Sachs ◽  
David L. Weeks ◽  
Yi Wen ◽  
Elizabeth A. Marcus ◽  
David R. Scott ◽  
...  

Helicobacter pylori is a Gram-negative neutralophile associated with peptic ulcers and gastric cancer. It has a unique ability to colonize the human stomach by acid acclimation. It uses the pH-gated urea channel, UreI, to enhance urea access to intrabacterial urease and a membrane-anchored periplasmic carbonic anhydrase to regulate periplasmic pH to ~6.1 in acidic media, whereas other neutralophiles cannot regulate periplasmic pH and thus only transit the stomach.


2008 ◽  
Vol 183 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Alex Engel ◽  
Peter Walter

In the canonical model of membrane fusion, the integrity of the fusing membranes is never compromised, preserving the identity of fusing compartments. However, recent molecular simulations provided evidence for a pathway to fusion in which holes in the membrane evolve into a fusion pore. Additionally, two biological membrane fusion models—yeast cell mating and in vitro vacuole fusion—have shown that modifying the composition or altering the relative expression levels of membrane fusion complexes can result in membrane lysis. The convergence of these findings showing membrane integrity loss during biological membrane fusion suggests new mechanistic models for membrane fusion and the role of membrane fusion complexes.


Sign in / Sign up

Export Citation Format

Share Document